In this paper, the authors generalize the definition of χ 2 distribution and introduce a quasi χ 2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of i...In this paper, the authors generalize the definition of χ 2 distribution and introduce a quasi χ 2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of independence about multivariate normal distributions, matrix normal distributions and two parts of the Wishart distribution.展开更多
This research paper deals with an extension of the non-central Wishart introduced in 1944 by Anderson and Girshick,that is the non-central Riesz distribution when the scale parameter is derived from a discrete vector....This research paper deals with an extension of the non-central Wishart introduced in 1944 by Anderson and Girshick,that is the non-central Riesz distribution when the scale parameter is derived from a discrete vector.It is related to the matrix of normal samples with monotonous missing data.We characterize this distribution by means of its Laplace transform and we give an algorithm for generating it.Then we investigate,based on the method of the moment,the estimation of the parameters of the proposed model.The performance of the proposed estimators is evaluated by a numerical study.展开更多
Random Matrix Theory (RMT) is a valuable tool for describing the asymptotic behavior of multiple systems,especially for large matrices. In this paper,using asymptotic random matrix theory,a new cooperative Multiple-In...Random Matrix Theory (RMT) is a valuable tool for describing the asymptotic behavior of multiple systems,especially for large matrices. In this paper,using asymptotic random matrix theory,a new cooperative Multiple-Input Multiple-Output (MIMO) scheme for spectrum sensing is proposed,which shows how asymptotic free property of random matrices and the property of Wishart distribution can be used to assist spectrum sensing for Cognitive Radios (CRs). Simulations over Rayleigh fading and AWGN channels demonstrate the proposed scheme has better detection performance compared with the energy detection techniques even in the case of a small sample of observations.展开更多
In this paper, the multivariate linear model Y = XB+e, e ~ Nm×k(0, ImΣ) is considered from the Bayes perspective. Under the normal-inverse Wishart prior for (BΣ), the Bayes estimators are derived. The sup...In this paper, the multivariate linear model Y = XB+e, e ~ Nm×k(0, ImΣ) is considered from the Bayes perspective. Under the normal-inverse Wishart prior for (BΣ), the Bayes estimators are derived. The superiority of the Bayes estimators of B and Σ over the least squares estimators under the criteria of Bayes mean squared error (BMSE) and Bayes mean squared error matrix (BMSEM) is shown. In addition, the Pitman Closeness (PC) criterion is also included to investigate the superiority of the Bayes estimator of B.展开更多
In this paper the density of the matrix variate beta distribution of rank lower than itsdimensionality is obtained with respect to a suitably defined differential form under the condi-tion that the difference between ...In this paper the density of the matrix variate beta distribution of rank lower than itsdimensionality is obtained with respect to a suitably defined differential form under the condi-tion that the difference between the identity and this matrix has full rank. As preliminaries,the Jacobian of a transformation related to decomposing a nonnegative-definite matrix into theproduct of a matrix of full column rank and its transpose and that of the transformation of anonnegative-definite matrix into its congruent matrix are established.展开更多
A new procedure of learning in Gaussian graphical models is proposed under the assumption that samples are possibly dependent.This assumption,which is pragmatically applied in various areas of multivariate analysis ra...A new procedure of learning in Gaussian graphical models is proposed under the assumption that samples are possibly dependent.This assumption,which is pragmatically applied in various areas of multivariate analysis ranging from bioinformatics to finance,makes standard Gaussian graphical models(GGMs) unsuitable.We demonstrate that the advantage of modeling dependence among samples is that the true discovery rate and positive predictive value are improved substantially than if standard GGMs are applied and the dependence among samples is ignored.The new method,called matrix-variate Gaussian graphical models(MGGMs),involves simultaneously modeling variable and sample dependencies with the matrix-normal distribution.The computation is carried out using a Markov chain Monte Carlo(MCMC) sampling scheme for graphical model determination and parameter estimation.Simulation studies and two real-world examples in biology and finance further illustrate the benefits of the new models.展开更多
文摘In this paper, the authors generalize the definition of χ 2 distribution and introduce a quasi χ 2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of independence about multivariate normal distributions, matrix normal distributions and two parts of the Wishart distribution.
文摘This research paper deals with an extension of the non-central Wishart introduced in 1944 by Anderson and Girshick,that is the non-central Riesz distribution when the scale parameter is derived from a discrete vector.It is related to the matrix of normal samples with monotonous missing data.We characterize this distribution by means of its Laplace transform and we give an algorithm for generating it.Then we investigate,based on the method of the moment,the estimation of the parameters of the proposed model.The performance of the proposed estimators is evaluated by a numerical study.
基金Supported by the National Natural Science Foundation of China (No.60972039)Natural Science Foundation of Jiangsu Province (No.BK2007729)Natural Science Funding of Jiangsu Province (No.06KJA51001)
文摘Random Matrix Theory (RMT) is a valuable tool for describing the asymptotic behavior of multiple systems,especially for large matrices. In this paper,using asymptotic random matrix theory,a new cooperative Multiple-Input Multiple-Output (MIMO) scheme for spectrum sensing is proposed,which shows how asymptotic free property of random matrices and the property of Wishart distribution can be used to assist spectrum sensing for Cognitive Radios (CRs). Simulations over Rayleigh fading and AWGN channels demonstrate the proposed scheme has better detection performance compared with the energy detection techniques even in the case of a small sample of observations.
基金Supported by National Natural Science Foundation of China(Grant Nos.11201005,11071015)the Foundation of National Bureau of Statistics(Grant No.2013LZ17)the Natural Science Foundation of Anhui Province(Grant No.1308085QA13)
文摘In this paper, the multivariate linear model Y = XB+e, e ~ Nm×k(0, ImΣ) is considered from the Bayes perspective. Under the normal-inverse Wishart prior for (BΣ), the Bayes estimators are derived. The superiority of the Bayes estimators of B and Σ over the least squares estimators under the criteria of Bayes mean squared error (BMSE) and Bayes mean squared error matrix (BMSEM) is shown. In addition, the Pitman Closeness (PC) criterion is also included to investigate the superiority of the Bayes estimator of B.
基金partially supported by National Council of Science and Technology(CONACYT)-Mexico,research grant 81512Research,Development and Innovation(IDI)-Spain,grant MTM2005-09209
文摘In this paper, we give alternative proofs of some results in [15] (Li R.,1997) about the expected value of zonal polynomials.
文摘In this paper the density of the matrix variate beta distribution of rank lower than itsdimensionality is obtained with respect to a suitably defined differential form under the condi-tion that the difference between the identity and this matrix has full rank. As preliminaries,the Jacobian of a transformation related to decomposing a nonnegative-definite matrix into theproduct of a matrix of full column rank and its transpose and that of the transformation of anonnegative-definite matrix into its congruent matrix are established.
文摘A new procedure of learning in Gaussian graphical models is proposed under the assumption that samples are possibly dependent.This assumption,which is pragmatically applied in various areas of multivariate analysis ranging from bioinformatics to finance,makes standard Gaussian graphical models(GGMs) unsuitable.We demonstrate that the advantage of modeling dependence among samples is that the true discovery rate and positive predictive value are improved substantially than if standard GGMs are applied and the dependence among samples is ignored.The new method,called matrix-variate Gaussian graphical models(MGGMs),involves simultaneously modeling variable and sample dependencies with the matrix-normal distribution.The computation is carried out using a Markov chain Monte Carlo(MCMC) sampling scheme for graphical model determination and parameter estimation.Simulation studies and two real-world examples in biology and finance further illustrate the benefits of the new models.