By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antino...By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.展开更多
Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its application...Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10874174)the President Foundation of the Chinese Academy of Sciences
文摘Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.