At present,there is a great demand for building materials in the market,and the market prospect of building materials is relatively considerable.Through studying the composition of river sediment and its resource util...At present,there is a great demand for building materials in the market,and the market prospect of building materials is relatively considerable.Through studying the composition of river sediment and its resource utilization in the field of building materials,this paper expounds the current domestic scholars research on river sediment in building materials,and summarizes the current problems and challenges,so as to provide a reference for the sustainable development of river sediment in the field of building materials.展开更多
We are all witnesses to the widespread use of wireless LANs (WLAN) and their easy implementation in indoor environments. Wi-Fi is the most popular technology for the WLAN. However, interference caused by building mate...We are all witnesses to the widespread use of wireless LANs (WLAN) and their easy implementation in indoor environments. Wi-Fi is the most popular technology for the WLAN. However, interference caused by building materials is a common, yet often overlooked, contributor to poor Wi-Fi performance. This interference occurs due to the nature of radio wave propagation and the characteristics of the wireless communication system. Therefore, during the implementation of these networks, one must consider the quasi-static nature of the Wi-Fi signal and its dependence on the influence of various building materials on the propagation of these waves. This paper presents the effects of building materials and structures on indoor environments for Wi-Fi 2.4 GHz and 5 GHz. To establish the interdependencies between factors influencing electric field levels, measurements were conducted in an experimental Wi-Fi network at different distances from the access point (AP). The results obtained show that the electric field strength of the Wi-Fi signal decreases depending on the distance, the building materials, and the transmitted frequency. Concrete material had the most significant impact on the strength of the electric field in Wi-Fi, while glass had a relatively minor effect on reducing it. Wi-Fi operates within the radio frequency spectrum, typically utilizing frequencies in the 2.4 GHz and 5 GHz bands. Additionally, measurements revealed that Wi-Fi signal penetration is more pronounced at lower frequencies (2.4 GHz) as opposed to the Wi-Fi signal 5 GHz. The findings can be used to address the impact of building materials and structures on indoor radio wave propagation, ultimately ensuring seamless Wi-Fi signal coverage within buildings.展开更多
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater...Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.展开更多
Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study...Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study focuses on the performances of materials obtained by combining a standard building material with a PCM.In particular,two different materials mixed with the same PCM are considered under the same climatic conditions.The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe.The results show that the addition of PCM to concrete and bricks can improve the thermal inertia of the resulting material.展开更多
Based on the recent research at home and abroad,this paper summarizes the preparation of cement clinker,baking-free brick,subgrade filler and ceramsite from sediment,and puts forward relevant suggestions and prospects...Based on the recent research at home and abroad,this paper summarizes the preparation of cement clinker,baking-free brick,subgrade filler and ceramsite from sediment,and puts forward relevant suggestions and prospects for the future research direction of sediment.展开更多
Due to the high cost of environment-friendly materials and limited funds for the new countryside construction,it is the principal contradiction in the application of environment-friendly materials to satisfy the deman...Due to the high cost of environment-friendly materials and limited funds for the new countryside construction,it is the principal contradiction in the application of environment-friendly materials to satisfy the demands of both environment protection and cost reduction.The authors proposed that the influence ranking of these materials on environment should be clarified first to settle this contradiction,that is,to choose energy-conserving and environment-friendly materials within the limit of expenditure.By comparing the energy consumption,shock resistance,economic efficiency and social acceptability of wall materials,the influence ranking was given as below:hollow concrete block < lime-sand brick < baked chamotte brick;by analyzing the advantages and disadvantages of floor and roof concrete materials,as well as attentions for reducing negative impacts,the order of their influence was given as below:precast concrete trough plate < precast hollow strength concrete plate < cast-in-place concrete plate < cast-in-place brick-concrete plate;suitable materials for door and window frameworks were concluded,the influence order of wall and floor decoration materials on environment was given as:bare walls without plastering < walls of stable soil plastering < walls of cement-water plastering < walls of lime plastering;concrete for the overall decoration < parquet floor < tile floor < terrazzo floor;and 7 heat retardation materials were suggested for the construction of new countryside.展开更多
As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure....As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials.展开更多
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p...In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.展开更多
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and...The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.展开更多
This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to wa...This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to water.The interest of this paper is to shed light on the thermomechanical and above all water effects of heavy fuel oil on a sample of silty clayey soil.To achieve this,we used heavy fuel oil added in different proportions to silty clayey soil,to make sample of bricks on which tests were carried out.At the end of the experimental tests carried out on materials made(bricks)with our soil sample,it appears that heavy fuel oil moderately reduces the mechanical resistance of bricks and slightly increases thermal diffusion through them.On the contrary,we note a very good water resistance of the bricks thanks to the heavy fuel oil,in particular their water absorption by capillarity.This confirms that the mixture of heavy fuel oil and a silty-clayey soil used as a coating makes it possible to prevent the infiltration of water into the walls of raw soil constructions.However,its use as a construction material does not guarantee very good mechanical resistance,and slightly increases thermal diffusion.展开更多
Phase change materials(PCMs)are an interesting technology due to their high density and isothermal behavior during phase change.Phase change material plays a major role in the energy saving of the buildings,which is g...Phase change materials(PCMs)are an interesting technology due to their high density and isothermal behavior during phase change.Phase change material plays a major role in the energy saving of the buildings,which is greatly aided by the incorporation of phase change material into building products such as bricks,cement,gypsum board,etc.In this study,an experiment has been conducted with three identical small chambers made up of normal,grooved and PCM-treated grooved bricks.Before the inclusion of PCM in grooved bricks,PCM material behavior has been studied by different techniques such as DSC,TG/DTA,SEM,and XRD.Thermal properties and thermal stability were investigated by differential scanning calorimeter(DSC)and thermogravimetric analyzer(TGA)respectively.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to determine the microstructure and crystalloid phase of the PCM before and after the accelerated thermal cycling test(0,60,120).These three identical model rooms built were exposed at a temperature just above 40°C with a heater.When the maximum outdoor temperature was 40-41°C,then the temperature of the PCM-treated grooved chamber was 32-33°C.The PCM-treated wall was tested and compared with a conventional and grooved wall.The difference between the PCM-treated grooved chamber and the untreated one was 8-9°C.PCM-treated bricks provided more efficient internal heat retention in summer when the outside temperature increased.展开更多
In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous p...In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove.This study is a good proof that pearlescent pigments can eliminate NO,and its performance is positively correlated with its titanium dioxide content.And this research will widen the application of nacreous pigments in functional building materials,and provide a new way to eliminate in door nitric oxide pollution.展开更多
Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with ...Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.展开更多
The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the pre...The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the present study were compared with the world average and also with the reported data available in literature. The radium equivalent activity, the absorbed dose rate, annual effective dose, external and internal hazard indices, gamma index, alpha index, annual gonadal dose equivalent and excess lifetime cancer risk were also evaluated to assess the potential radiation hazards associated with these building materials. All samples under investigation were found to be within the recommended safety limit and do not pose any significant radiation hazards. This study can be used as a reference for more extensive studies of the same subject in future.展开更多
The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and...The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.展开更多
This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change ma...This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change materials,with different melting points:PCMІ,PCM II,PCM III and PCM IV,when used in conjunction with a sheet metal roof.The exterior metal roofing surface temperature was held constant at 50℃,60℃,70℃and 80℃,using a thermal source(halogen lights)for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials for each condition.The thermal behaviors of the phase change materials were analyzed by differential scanning calorimeter(DSC).The results showed the melting points of PCMІ,PCM II,PCM III and PCM IV were around 45℃,50℃,55℃and 59℃,respectively.The integration of PCM IV into the metal roofing sheet increased the thermal performance by reducing the room temperature up to 2.8%,1.4%,1.0%and 0.7%when compared with the normal metal roof sheet,at the controlled temperatures of 50℃,60℃,70℃and 80℃,respectively.The thermal absorption of the phase change materials also caused a time delay in the model room reaching a steady temperature.The integration of phase change materials with metal roofing sheets resulted in better thermal performance and conservation of electrical energy by reducing the demand for cooling.展开更多
The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used ...The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used in Morocco in order to evaluate the radiological risk caused by natural radioactivity. To this end, the analyses were carried out, using two nuclear techniques, namely high resolution gamma spectrometry and alpha dosimetry based on the use of LR115, on 50 samples collected from large commercial suppliers in Morocco. The results of these analyses show that the average specific activities of 226Ra, 232Th and 40K in these materials vary from 9 to 52 Bq/kg, 3 to 63 Bq/kg and 68 to 705 Bq/kg respectively. These activities remain within the permissible limits of 35 Bq/kg, 30 Bq/kg and 370 Bq/kg respectively, with the exception of a few samples of red brick, gray cement, ceramic and granite. The activity of the radium equivalent (Raeq), the internal (Hin) and external (Hex) hazard indices, the absorbed dose rate, the total annual effective dose , the excess lifetime cancer risk (ELCR) as well as volumic activities, exhalation rates in terms of area (ES) and mass (EM) are calculated for the samples analyzed in this work in order to assess the radiological risks resulting from the use of these materials in various construction activities. It seems that the values of these indices vary from 19 to 196 Bq/kg, 0.08 to 0.67, 0.05 to 0.53, 9 to 91 nGy/h, 0.05 to 0.56 mSv/y, 0.19 × 10−3 to 1.96 × 10−3, 72 to 350 Bq/m3, 56 to 273 mBq⋅m−2⋅h−1 and 3 to 15 mBq⋅kg−1⋅h−1 respectively. The lowest values are identified for gypsum, while the highest are attributed to granite. All of the obtained results of these indices respect the permissible limits except for the Raeq in some granite samples, the ELCR index in all samples except gypsum and the radon volumic activity in some gray cement samples, ceramic and granite. As a result, the different types of building materials analyzed in our work do not present a health risk to the public and can be used in various construction activities, with the exception of a few samples of red brick, gray cement, ceramic and granite. The choice of the use of red brick, gray cement and ceramic should be monitored and adapted according to the criteria of the limitation of the doses whereas the use of the granite must be moderate in order to limit over time the health risk which increases with the duration of exposure of humans to these building materials.展开更多
The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practic...The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation.展开更多
To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement a...To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.展开更多
A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and th...A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and the simulation results were validated with experimental data from the literatures.The calculation shows that air exchange rate larger than 2 h-1 should be prevented,if the purpose is only for formaldehyde emissions control.The effects of temperature on formaldehyde migration are obvious.展开更多
基金Supported by Undergraduate Training Program for Innovation and Entrepreneurship of Jiangxi Provincial Department of Education(S202310846004&S202310846007).
文摘At present,there is a great demand for building materials in the market,and the market prospect of building materials is relatively considerable.Through studying the composition of river sediment and its resource utilization in the field of building materials,this paper expounds the current domestic scholars research on river sediment in building materials,and summarizes the current problems and challenges,so as to provide a reference for the sustainable development of river sediment in the field of building materials.
文摘We are all witnesses to the widespread use of wireless LANs (WLAN) and their easy implementation in indoor environments. Wi-Fi is the most popular technology for the WLAN. However, interference caused by building materials is a common, yet often overlooked, contributor to poor Wi-Fi performance. This interference occurs due to the nature of radio wave propagation and the characteristics of the wireless communication system. Therefore, during the implementation of these networks, one must consider the quasi-static nature of the Wi-Fi signal and its dependence on the influence of various building materials on the propagation of these waves. This paper presents the effects of building materials and structures on indoor environments for Wi-Fi 2.4 GHz and 5 GHz. To establish the interdependencies between factors influencing electric field levels, measurements were conducted in an experimental Wi-Fi network at different distances from the access point (AP). The results obtained show that the electric field strength of the Wi-Fi signal decreases depending on the distance, the building materials, and the transmitted frequency. Concrete material had the most significant impact on the strength of the electric field in Wi-Fi, while glass had a relatively minor effect on reducing it. Wi-Fi operates within the radio frequency spectrum, typically utilizing frequencies in the 2.4 GHz and 5 GHz bands. Additionally, measurements revealed that Wi-Fi signal penetration is more pronounced at lower frequencies (2.4 GHz) as opposed to the Wi-Fi signal 5 GHz. The findings can be used to address the impact of building materials and structures on indoor radio wave propagation, ultimately ensuring seamless Wi-Fi signal coverage within buildings.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102,52272172,and 52102193)the Major Program of the National Natural Science Foundation of China(Grant No.92163206)+2 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1201501 and 2022YFA1204100)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities.
文摘Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.
文摘Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study focuses on the performances of materials obtained by combining a standard building material with a PCM.In particular,two different materials mixed with the same PCM are considered under the same climatic conditions.The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe.The results show that the addition of PCM to concrete and bricks can improve the thermal inertia of the resulting material.
基金Natural Science and Technology Project of Jiangxi University of Technology(ZR2010).
文摘Based on the recent research at home and abroad,this paper summarizes the preparation of cement clinker,baking-free brick,subgrade filler and ceramsite from sediment,and puts forward relevant suggestions and prospects for the future research direction of sediment.
基金Supported by National Soft Science Foundation(2008GXS5D128)Scientific and Technological Foundation of Talents(DB07012)~~
文摘Due to the high cost of environment-friendly materials and limited funds for the new countryside construction,it is the principal contradiction in the application of environment-friendly materials to satisfy the demands of both environment protection and cost reduction.The authors proposed that the influence ranking of these materials on environment should be clarified first to settle this contradiction,that is,to choose energy-conserving and environment-friendly materials within the limit of expenditure.By comparing the energy consumption,shock resistance,economic efficiency and social acceptability of wall materials,the influence ranking was given as below:hollow concrete block < lime-sand brick < baked chamotte brick;by analyzing the advantages and disadvantages of floor and roof concrete materials,as well as attentions for reducing negative impacts,the order of their influence was given as below:precast concrete trough plate < precast hollow strength concrete plate < cast-in-place concrete plate < cast-in-place brick-concrete plate;suitable materials for door and window frameworks were concluded,the influence order of wall and floor decoration materials on environment was given as:bare walls without plastering < walls of stable soil plastering < walls of cement-water plastering < walls of lime plastering;concrete for the overall decoration < parquet floor < tile floor < terrazzo floor;and 7 heat retardation materials were suggested for the construction of new countryside.
基金funded by the National Natural Science Foundation of China (52078068)Postgraduate Research&Practice Innovation Program of Jiangsu Province (SJCX22_1391)+1 种基金the National Science Foundation of Jiangsu Province (BK20220626)Changzhou Leading Innovative Talent Introduction and Cultivation Project (CQ20210085).
文摘As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials.
文摘In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.
文摘The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.
文摘This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to water.The interest of this paper is to shed light on the thermomechanical and above all water effects of heavy fuel oil on a sample of silty clayey soil.To achieve this,we used heavy fuel oil added in different proportions to silty clayey soil,to make sample of bricks on which tests were carried out.At the end of the experimental tests carried out on materials made(bricks)with our soil sample,it appears that heavy fuel oil moderately reduces the mechanical resistance of bricks and slightly increases thermal diffusion through them.On the contrary,we note a very good water resistance of the bricks thanks to the heavy fuel oil,in particular their water absorption by capillarity.This confirms that the mixture of heavy fuel oil and a silty-clayey soil used as a coating makes it possible to prevent the infiltration of water into the walls of raw soil constructions.However,its use as a construction material does not guarantee very good mechanical resistance,and slightly increases thermal diffusion.
文摘Phase change materials(PCMs)are an interesting technology due to their high density and isothermal behavior during phase change.Phase change material plays a major role in the energy saving of the buildings,which is greatly aided by the incorporation of phase change material into building products such as bricks,cement,gypsum board,etc.In this study,an experiment has been conducted with three identical small chambers made up of normal,grooved and PCM-treated grooved bricks.Before the inclusion of PCM in grooved bricks,PCM material behavior has been studied by different techniques such as DSC,TG/DTA,SEM,and XRD.Thermal properties and thermal stability were investigated by differential scanning calorimeter(DSC)and thermogravimetric analyzer(TGA)respectively.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to determine the microstructure and crystalloid phase of the PCM before and after the accelerated thermal cycling test(0,60,120).These three identical model rooms built were exposed at a temperature just above 40°C with a heater.When the maximum outdoor temperature was 40-41°C,then the temperature of the PCM-treated grooved chamber was 32-33°C.The PCM-treated wall was tested and compared with a conventional and grooved wall.The difference between the PCM-treated grooved chamber and the untreated one was 8-9°C.PCM-treated bricks provided more efficient internal heat retention in summer when the outside temperature increased.
基金supported by the National Natural Science Foundation of China(51872147)the 111 Project(D20015)the Program for Innovative Research Team of Science and Technology in the Universities of Henan Province(19IRTSTHN025)。
文摘In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove.This study is a good proof that pearlescent pigments can eliminate NO,and its performance is positively correlated with its titanium dioxide content.And this research will widen the application of nacreous pigments in functional building materials,and provide a new way to eliminate in door nitric oxide pollution.
文摘Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.
文摘The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the present study were compared with the world average and also with the reported data available in literature. The radium equivalent activity, the absorbed dose rate, annual effective dose, external and internal hazard indices, gamma index, alpha index, annual gonadal dose equivalent and excess lifetime cancer risk were also evaluated to assess the potential radiation hazards associated with these building materials. All samples under investigation were found to be within the recommended safety limit and do not pose any significant radiation hazards. This study can be used as a reference for more extensive studies of the same subject in future.
文摘The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.
基金The authors would like to thank the Thailand Science Research and Innovation(TSRI),Faculty of Science,Naresuan University for providing financial support to this research work,and our research center.
文摘This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change materials,with different melting points:PCMІ,PCM II,PCM III and PCM IV,when used in conjunction with a sheet metal roof.The exterior metal roofing surface temperature was held constant at 50℃,60℃,70℃and 80℃,using a thermal source(halogen lights)for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials for each condition.The thermal behaviors of the phase change materials were analyzed by differential scanning calorimeter(DSC).The results showed the melting points of PCMІ,PCM II,PCM III and PCM IV were around 45℃,50℃,55℃and 59℃,respectively.The integration of PCM IV into the metal roofing sheet increased the thermal performance by reducing the room temperature up to 2.8%,1.4%,1.0%and 0.7%when compared with the normal metal roof sheet,at the controlled temperatures of 50℃,60℃,70℃and 80℃,respectively.The thermal absorption of the phase change materials also caused a time delay in the model room reaching a steady temperature.The integration of phase change materials with metal roofing sheets resulted in better thermal performance and conservation of electrical energy by reducing the demand for cooling.
文摘The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used in Morocco in order to evaluate the radiological risk caused by natural radioactivity. To this end, the analyses were carried out, using two nuclear techniques, namely high resolution gamma spectrometry and alpha dosimetry based on the use of LR115, on 50 samples collected from large commercial suppliers in Morocco. The results of these analyses show that the average specific activities of 226Ra, 232Th and 40K in these materials vary from 9 to 52 Bq/kg, 3 to 63 Bq/kg and 68 to 705 Bq/kg respectively. These activities remain within the permissible limits of 35 Bq/kg, 30 Bq/kg and 370 Bq/kg respectively, with the exception of a few samples of red brick, gray cement, ceramic and granite. The activity of the radium equivalent (Raeq), the internal (Hin) and external (Hex) hazard indices, the absorbed dose rate, the total annual effective dose , the excess lifetime cancer risk (ELCR) as well as volumic activities, exhalation rates in terms of area (ES) and mass (EM) are calculated for the samples analyzed in this work in order to assess the radiological risks resulting from the use of these materials in various construction activities. It seems that the values of these indices vary from 19 to 196 Bq/kg, 0.08 to 0.67, 0.05 to 0.53, 9 to 91 nGy/h, 0.05 to 0.56 mSv/y, 0.19 × 10−3 to 1.96 × 10−3, 72 to 350 Bq/m3, 56 to 273 mBq⋅m−2⋅h−1 and 3 to 15 mBq⋅kg−1⋅h−1 respectively. The lowest values are identified for gypsum, while the highest are attributed to granite. All of the obtained results of these indices respect the permissible limits except for the Raeq in some granite samples, the ELCR index in all samples except gypsum and the radon volumic activity in some gray cement samples, ceramic and granite. As a result, the different types of building materials analyzed in our work do not present a health risk to the public and can be used in various construction activities, with the exception of a few samples of red brick, gray cement, ceramic and granite. The choice of the use of red brick, gray cement and ceramic should be monitored and adapted according to the criteria of the limitation of the doses whereas the use of the granite must be moderate in order to limit over time the health risk which increases with the duration of exposure of humans to these building materials.
基金Sponsored by Social Development Project of “Science and Technology Innovation Action Plan” of Shanghai Science and Technology Commission in 2019 (19DZ1203400)。
文摘The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation.
基金Funded by the Sciences and Technology Bureau of Yulin City (No. 2006YL100-06)
文摘To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.
文摘A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and the simulation results were validated with experimental data from the literatures.The calculation shows that air exchange rate larger than 2 h-1 should be prevented,if the purpose is only for formaldehyde emissions control.The effects of temperature on formaldehyde migration are obvious.