期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Text Rank for Domain Specific Using Field Association Words 被引量:1
1
作者 Omnia G. El Barbary El Sayed Atlam 《Journal of Computer and Communications》 2020年第11期69-79,共11页
Text Rank is a popular tool for obtaining words or phrases that are important for many Natural Language Processing (NLP) tasks. This paper presents a practical approach for Text Rank domain specific using Field Associ... Text Rank is a popular tool for obtaining words or phrases that are important for many Natural Language Processing (NLP) tasks. This paper presents a practical approach for Text Rank domain specific using Field Association (FA) words. We present the keyphrase separation technique not for a single document, although for a particular domain. The former builds a specific domain field. The second collects a list of ideal FA terms and compounds FA terms from the specific domain that are considered to be contender keyword phrases. Therefore, we combine two-word node weights and field tree relationships into a new approach to generate keyphrases from a particular domain. Studies using the changed approach to extract key phrases demonstrate that the latest techniques including FA terms are stronger than the others that use normal words and its precise words reach 90%. 展开更多
关键词 Text Rank Keyphrase Extraction field association words Information Retrieval
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部