期刊文献+
共找到1,667篇文章
< 1 2 84 >
每页显示 20 50 100
Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
1
作者 Kai-Feng Yang Sheng-Jie Li +1 位作者 Jun Xu Yong-Bin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1571-1581,共11页
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ... BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions. 展开更多
关键词 Colorectal cancer Synchronous liver metastasis Gray-level co-occurrence matrix Machine learning algorithm Prediction model
下载PDF
Solving Arithmetic Word Problems of Entailing Deep Implicit Relations by Qualia Syntax-Semantic Model
2
作者 Hao Meng Xinguo Yu +3 位作者 Bin He Litian Huang Liang Xue Zongyou Qiu 《Computers, Materials & Continua》 SCIE EI 2023年第10期541-555,共15页
Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This pap... Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This paper proposes to discover deep implicit relations by qualia inference to solve Arithmetic Word Problems entailing Deep Implicit Relations(DIR-AWP),such as entailing commonsense or subject-domain knowledge involved in the problem-solving process.This paper proposes to take three steps to solve DIR-AWPs,in which the first three steps are used to conduct the qualia inference process.The first step uses the prepared set of qualia-quantity models to identify qualia scenes from the explicit relations extracted by the Syntax-Semantic(S2)method from the given problem.The second step adds missing entities and deep implicit relations in order using the identified qualia scenes and the qualia-quantity models,respectively.The third step distills the relations for solving the given problem by pruning the spare branches of the qualia dependency graph of all the acquired relations.The research contributes to the field by presenting a comprehensive approach combining explicit and implicit knowledge to enhance reasoning abilities.The experimental results on Math23K demonstrate hat the proposed algorithm is superior to the baseline algorithms in solving AWPs requiring deep implicit relations. 展开更多
关键词 Arithmetic word problem implicit quantity relations qualia syntax-semantic model
下载PDF
Spatio-Temporal Variations in Co-Occurrence Patterns of Fish Communities in Haizhou Bay, China: Null Model Analysis
3
作者 WANG Jiao ZHANG Chongliang +3 位作者 XUE Ying CHEN Yong REN Yiping XU Binduo 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第6期1497-1506,共10页
Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patte... Co-occurrence pattern of fish species plays an important role in understanding the spatio-temporal structure and the stability of fish community.Species coexistence may vary with time and space.The co-occurrence patterns of fish species were examined using the C-score under fixed-fixed null model for fish communities in spring and autumn over different years in the Haizhou Bay,China.The results showed that fish assemblages in the whole bay had non-random patterns in spring and autumn over different years.However,the fish co-occurrence patterns were different for the northern and southern fish assemblages in spring and autumn.The northern fish assemblage showed structured pattern,whereas the southern assemblage were randomly assembled in spring.The co-occurrence patterns of fish communities were relatively stable over different years,and the number of significant species pairs in northern assemblage was more than that in the southern assemblage.Environmental heterogeneity played an important role in determining the distributions of fish species that formed significant species pairs,which might affect the co-occurrence patterns of northern and southern assemblages further in the Haizhou Bay. 展开更多
关键词 FISH COMMUNITY Haizhou BAY NULL model analysis SPECIES co-occurrence pattern
下载PDF
Combined effects of habitat and interspec ificinteraction define co-occurrence patterns of sympatric Galliformes 被引量:5
4
作者 Lijun Chen Zufei Shu +3 位作者 Wutao Yao Yong Ma Wenhong Xiao Xiaoqun Huang 《Avian Research》 CSCD 2019年第3期344-356,共13页
Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of comm... Background:Disentangling the relative importance of environmental variables and interspecific interaction in modulating co-occurrence patterns of sympatric species is essential for understanding the mechanisms of community assembly and biodiversity. For the two sympatric Galliformes, Silver Pheasants (Lophura nycthemera) and Whitenecklaced Partridges (Arborophila gingica), we know little about the role of habitat use and interspecific interactions in modulating their coexistence. Methods:We adopted a probabilistic approach incorporating habitat preference and interspecific interaction using occupancy model to account for imperfect detection,and used daily activity pattern analysis to investigate the cooccurrence pattern of these two sympatric Galliformes in wet and dry seasons. Results: We found that the detection probability of Silver Pheasant and White-necklaced Partridge were related to habitat variables and interspecific interaction. The presence of Silver Pheasant increases the detection probability of White-necklaced Partridge in both the wet and dry season. However, the presence of White-necklaced Partridges increases the detection probability of Silver Pheasants in the wet season, but decreases the probability in the dry season. Further, Silver Pheasants were detected frequently in the sites of high values of enhanced vegetable index (EVI) in both the wet and dry season, and in sites away from human residential settlement in the wet season. Whitenecklaced partridges were mainly detected in low EVI sites. The site use probabilities of two Galliformes were best explained by habitat variables, Silver Pheasants and White-necklaced Partridges preferred steeper areas during the wet and dry season. Both species mainly occurred in low EVI areas during the wet season and occupied sites away from the resident settlement during the dry season. Moreover, the site use probabilities of two species had opposite relationships with forest canopy coverage. Silver Pheasants preferred areas with high forest canopy coverage whereas White-necklaced Partridges preferred low forest canopy coverage in the dry season, and vice versa in the wet season. Species interaction factor (SIF)corroborated weak evidence of the dependence of the site use of one species on that of the other in the either dry or wet season.Temporally, high overlapping of daily activity pattern indicated no significantly temporal niche differentiation between sympatric Galliformes in both wet and dry seasons. Conclusions:Our results demonstrated that the presence of two species influenced the detection probability interactively and there was no temporal partitioning in activity time between Silver Pheasants and White-necklaced Partridges in the wet and dry seasons.The site use probability of two Galliformes was best explained by habitat variables, especially the forest canopy coverage.Therefore, environmental variables and interspecific interaction are the leading drivers regulating the detection and site use probability and promoting co-occurrence of Silver Pheasants and White-necklaced Partridges. 展开更多
关键词 Arborophila gingica co-occurrence HABITAT preference INTERSPECIFIC interaction Lophura nycthemera OCCUPANCY model
下载PDF
Vari-gram language model based on word clustering
5
作者 袁里驰 《Journal of Central South University》 SCIE EI CAS 2012年第4期1057-1062,共6页
Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with g... Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with good performance and less computation.2) Class-based method always loses the prediction ability to adapt the text in different domains.In order to solve above problems,a definition of word similarity by utilizing mutual information was presented.Based on word similarity,the definition of word set similarity was given.Experiments show that word clustering algorithm based on similarity is better than conventional greedy clustering method in speed and performance,and the perplexity is reduced from 283 to 218.At the same time,an absolute weighted difference method was presented and was used to construct vari-gram language model which has good prediction ability.The perplexity of vari-gram model is reduced from 234.65 to 219.14 on Chinese corpora,and is reduced from 195.56 to 184.25 on English corpora compared with category-based model. 展开更多
关键词 word similarity word clustering statistical language model vari-gram language model
下载PDF
Naxi-English Bilingual Word Alignment Based on Language Characteristics and Log-Linear Model
6
作者 Yu Zhengtao Xian Yantuan +2 位作者 Tian Wei Guo Jianyi Zhang Tao 《China Communications》 SCIE CSCD 2012年第3期78-86,共9页
We propose a method that can achieve the Naxi-English bilingual word automatic alignment based on a log-linear model.This method defines the different Naxi-English structural feature functions,which are English-Naxi i... We propose a method that can achieve the Naxi-English bilingual word automatic alignment based on a log-linear model.This method defines the different Naxi-English structural feature functions,which are English-Naxi interval switching function and Naxi-English bilingual word position transformation function.With the manually labeled Naxi-English words alignment corpus,the parameters of the model are trained by using the minimum error,thus Naxi-English bilingual word alignment is achieved automatically.Experiments are conducted with IBM Model 3 as a benchmark,and the Naxi language constraints are introduced.The final experiment results show that the proposed alignment method achieves very good results:the introduction of the language characteristic function can effectively improve the accuracy of the Naxi-English Bilingual Word Alignment. 展开更多
关键词 word aligrmaent Naxi language ENGLISH log-linear model interval switching function posi-tion transformation function
下载PDF
Word Embeddings and Semantic Spaces in Natural Language Processing 被引量:1
7
作者 Peter J. Worth 《International Journal of Intelligence Science》 2023年第1期1-21,共21页
One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse ... One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse of dimensionality, a problem which plagues NLP in general given that the feature set for learning starts as a function of the size of the language in question, upwards of hundreds of thousands of terms typically. As such, much of the research and development in NLP in the last two decades has been in finding and optimizing solutions to this problem, to feature selection in NLP effectively. This paper looks at the development of these various techniques, leveraging a variety of statistical methods which rest on linguistic theories that were advanced in the middle of the last century, namely the distributional hypothesis which suggests that words that are found in similar contexts generally have similar meanings. In this survey paper we look at the development of some of the most popular of these techniques from a mathematical as well as data structure perspective, from Latent Semantic Analysis to Vector Space Models to their more modern variants which are typically referred to as word embeddings. In this review of algoriths such as Word2Vec, GloVe, ELMo and BERT, we explore the idea of semantic spaces more generally beyond applicability to NLP. 展开更多
关键词 Natural Language Processing Vector Space models Semantic Spaces word Embeddings Representation Learning Text Vectorization Machine Learning Deep Learning
下载PDF
Investigating the Psychometric Impact of Negative Worded Items in Reading Comprehension Passages with a 3PL Cross-Classified Testlet Model
8
作者 Yong Luo Junhui Liu 《Journal of International Education and Practice》 2019年第1期47-59,共13页
Negative worded(NW)items used in psychological instruments have been studied with the bifactor model to investigate whether the NW items form a secondary factor due to negative wording orthogonal to the measured laten... Negative worded(NW)items used in psychological instruments have been studied with the bifactor model to investigate whether the NW items form a secondary factor due to negative wording orthogonal to the measured latent construct,a validation procedure which checks whether NW items form a source of construct irrelevant variance(CIV)and hence constitute a validity threat.In the context of educational testing,however,no such validation attempts have been made.In this study,we studied the psychometric impact of NW items in an English proficiency reading comprehension test using a modeling approach similar to the bifactor model,namely the three-parameter logistic cross-classified testlet response theory(3PL CCTRT)model,to account for both guessing and possible local item dependence due to passage effect in the data set.The findings indicate that modeling the NW items with a separate factor leads to noticeable improvement in model fit,and the factor variance is marginal but nonzero.However,item and ability parameter estimates are highly similar between the 3PL CCTRT model and other models that do not model the NW items.It is concluded that the NW items introduce CIV into the data,but its magnitude is too small to change item and person ability parameter estimates to an extent of practical significance. 展开更多
关键词 Negative wording Bifactor model Cross-classified testlet model Validation
下载PDF
自然语言处理领域中的词嵌入方法综述 被引量:5
9
作者 曾骏 王子威 +2 位作者 于扬 文俊浩 高旻 《计算机科学与探索》 CSCD 北大核心 2024年第1期24-43,共20页
词嵌入作为自然语言处理任务的第一步,其目的是将输入的自然语言文本转换为模型可以处理的数值向量,即词向量,也称词的分布式表示。词向量作为自然语言处理任务的根基,是完成一切自然语言处理任务的前提。然而,国内外针对词嵌入方法的... 词嵌入作为自然语言处理任务的第一步,其目的是将输入的自然语言文本转换为模型可以处理的数值向量,即词向量,也称词的分布式表示。词向量作为自然语言处理任务的根基,是完成一切自然语言处理任务的前提。然而,国内外针对词嵌入方法的综述文献大多只关注于不同词嵌入方法本身的技术路线,而未能将词嵌入的前置分词方法以及词嵌入方法完整的演变趋势进行分析与概述。以word2vec模型和Transformer模型作为划分点,从生成的词向量是否能够动态地改变其内隐的语义信息来适配输入句子的整体语义这一角度,将词嵌入方法划分为静态词嵌入方法和动态词嵌入方法,并对此展开讨论。同时,针对词嵌入中的分词方法,包括整词切分和子词切分,进行了对比和分析;针对训练词向量所使用的语言模型,从概率语言模型到神经概率语言模型再到如今的深度上下文语言模型的演化,进行了详细列举和阐述;针对预训练语言模型时使用的训练策略进行了总结和探讨。最后,总结词向量质量的评估方法,分析词嵌入方法的当前现状并对其未来发展方向进行展望。 展开更多
关键词 词向量 词嵌入方法 自然语言处理 语言模型 分词 词向量评估
下载PDF
Research on high-performance English translation based on topic model
10
作者 Yumin Shen Hongyu Guo 《Digital Communications and Networks》 SCIE CSCD 2023年第2期505-511,共7页
Retelling extraction is an important branch of Natural Language Processing(NLP),and high-quality retelling resources are very helpful to improve the performance of machine translation.However,traditional methods based... Retelling extraction is an important branch of Natural Language Processing(NLP),and high-quality retelling resources are very helpful to improve the performance of machine translation.However,traditional methods based on the bilingual parallel corpus often ignore the document background in the process of retelling acquisition and application.In order to solve this problem,we introduce topic model information into the translation mode and propose a topic-based statistical machine translation method to improve the translation performance.In this method,Probabilistic Latent Semantic Analysis(PLSA)is used to obtains the co-occurrence relationship between words and documents by the hybrid matrix decomposition.Then we design a decoder to simplify the decoding process.Experiments show that the proposed method can effectively improve the accuracy of translation. 展开更多
关键词 Machine translation Topic model Statistical machine translation Bilingual word vector RETELLING
下载PDF
An Effective Machine-Learning Based Feature Extraction/Recognition Model for Fetal Heart Defect Detection from 2D Ultrasonic Imageries
11
作者 Bingzheng Wu Peizhong Liu +3 位作者 Huiling Wu Shunlan Liu Shaozheng He Guorong Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1069-1089,共21页
Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Car... Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease. 展开更多
关键词 Congenital heart defect fetal heart ultrasonic standard plane image recognition and classification machine learning bag of words model feature fusion
下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:2
12
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短时记忆网络 条件随机场
下载PDF
主题方面共享的领域主题层次模型
13
作者 万常选 张奕韬 +3 位作者 刘德喜 刘喜平 廖国琼 万齐智 《软件学报》 EI CSCD 北大核心 2024年第4期1790-1818,共29页
层次主题模型是构建主题层次的重要工具.现有的层次主题模型大多通过在主题模型中引入nCRP构造方法,为文档主题提供树形结构的先验分布,但无法生成具有明确领域涵义的主题层次结构,即领域主题层次.同时,领域主题不仅存在层次关系,而且... 层次主题模型是构建主题层次的重要工具.现有的层次主题模型大多通过在主题模型中引入nCRP构造方法,为文档主题提供树形结构的先验分布,但无法生成具有明确领域涵义的主题层次结构,即领域主题层次.同时,领域主题不仅存在层次关系,而且不同父主题下的子主题之间还存在子领域方面共享的关联关系,在现有主题关系研究中没有合适的模型来生成这种领域主题层次.为了从领域文本中自动、有效地挖掘出领域主题的层次关系和关联关系,在4个方面进行创新研究.首先,通过主题共享机制改进nCRP构造方法,提出nCRP+层次构造方法,为主题模型中的主题提供具有分层主题方面共享的树形先验分布;其次,结合nCRP+和HDP模型构建重分层的Dirichlet过程,提出rHDP(reallocated hierarchical Dirichlet processes)层次主题模型;第三,结合领域分类信息、词语语义和主题词的领域代表性,定义领域知识,包括基于投票机制的领域隶属度、词语与领域主题的语义相关度和层次化的主题-词语贡献度;最后,通过领域知识改进rHDP主题模型中领域主题和主题词的分配过程,提出结合领域知识的层次主题模型rHDP_DK(rHDP with domain knowledge),并改进采样过程.实验结果表明,基于nCRP+的层次主题模型在评价指标方面均优于基于nCRP的层次主题模型(hLDA,nHDP)和神经主题模型(TSNTM);通过rHDP_DK模型生成的主题层次结构具有领域主题层次清晰、关联子主题的主题词领域差异明确的特点.此外,该模型将为领域主题层次提供一个通用的自动挖掘框架. 展开更多
关键词 层次主题模型 领域分类信息 词语语义 主题关联关系 层次化的采样过程 领域主题层次
下载PDF
基于A-BiLSTM和CNN的文本分类
14
作者 黄远 戴晓红 +2 位作者 黄伟建 于钧豪 黄峥 《计算机工程与设计》 北大核心 2024年第5期1428-1434,共7页
为解决单一神经网络不能获取准确全局文本信息的问题,提出一种基于A-BiLSTM双通道和优化CNN的文本分类模型。A-BiLSTM双通道层使用注意力机制关注对文本分类贡献值较大的部分,并用BiLSTM提取文本中上下文语义信息;A-BiLSTM双通道层中将... 为解决单一神经网络不能获取准确全局文本信息的问题,提出一种基于A-BiLSTM双通道和优化CNN的文本分类模型。A-BiLSTM双通道层使用注意力机制关注对文本分类贡献值较大的部分,并用BiLSTM提取文本中上下文语义信息;A-BiLSTM双通道层中将两者输出的特征信息融合,得到高级语义;A-BiLSTM双通道层后,使用优化CNN的强学习能力提取关键局部特征,得到最终文本特征表示。分类器输出文本信息的类别。实验结果表明,该模型分类效果优于其它对比模型,具有良好的泛化能力。 展开更多
关键词 文本分类 深度学习 双通道网络 注意力机制 双向长短时记忆网络 卷积神经网络 词向量模型
下载PDF
基于复杂网络的在线口碑传播模型研究
15
作者 杜学美 荀伟 +1 位作者 谢志鸿 李美菱 《上海管理科学》 2024年第3期25-33,共9页
在线口碑已成为信息传播领域的核心力量,对其进行系统分析对于理解当代社交媒体环境中的消费者行为至关重要。论文引入了传播激活和接受激活的概念,基于病毒传播的SIR模型构建在线口碑传播模型,并运用复杂网络和系统仿真的方法模拟在线... 在线口碑已成为信息传播领域的核心力量,对其进行系统分析对于理解当代社交媒体环境中的消费者行为至关重要。论文引入了传播激活和接受激活的概念,基于病毒传播的SIR模型构建在线口碑传播模型,并运用复杂网络和系统仿真的方法模拟在线口碑传播过程,深入探讨了不同因素对在线口碑传播规模的影响,识别了在线口碑传播网络中各个节点的特征并分析了网络的结构特性。结果表明,不同因素对在线口碑传播规模的作用不同,且关键节点和免疫节点具有不同的属性特征。此外,研究还发现在线口碑传播网络具有小世界特性和无标度特性,该结论进一步丰富了在线口碑传播的理论框架,也为企业网络营销策略及产品质量追溯的优化等提供一定的应用参考。 展开更多
关键词 在线口碑 口碑传播模型 复杂网络 NETLOGO
下载PDF
文本相似度计算方法综述
16
作者 魏嵬 丁香香 +2 位作者 郭梦星 杨钊 刘辉 《计算机工程》 CAS CSCD 北大核心 2024年第9期18-32,共15页
文本相似度计算是自然语言处理的一部分,用来计算两个词、句子及文本之间的相似程度,具有多种应用场景,文本相似度计算的研究对于人工智能的发展有着重要作用。文本相似度计算起初基于字符串表面,随着词向量的提出,文本相似度计算可进... 文本相似度计算是自然语言处理的一部分,用来计算两个词、句子及文本之间的相似程度,具有多种应用场景,文本相似度计算的研究对于人工智能的发展有着重要作用。文本相似度计算起初基于字符串表面,随着词向量的提出,文本相似度计算可进行基于统计以及深度学习的建模与计算,也可与预训练模型相结合。首先,将文本相似度计算方法分为基于字符串、基于词向量、基于预训练模型、基于深度学习、其他方法5类,并对这些方法进行简要介绍。然后,根据不同文本相似度计算方法的原理,具体介绍了编辑距离、汉明距离、词袋模型、向量空间模型(VSM)、深度结构语义模型(DSSM)、句子嵌入的简单对比学习(SimCSE)等常见方法。最后,对文本相似度计算常用的数据集以及评价标准进行整理和分析,并对文本相似度计算的未来发展进行展望。 展开更多
关键词 文本相似度 字符串 词向量 预训练模型 深度学习
下载PDF
英语单词学习推荐模型在教学改革中的应用研究
17
作者 胡二娟 刘小强 《计算机应用文摘》 2024年第8期5-7,共3页
在人工智能技术的背景下,文章主要探讨了英语单词学习的推荐方法。其中,建立了1个基于人工智能的英语单词学习推荐模型,该模型利用用户的学习行为数据和单词特征进行训练,旨在为用户提供个性化的单词推荐。实验验证结果显示,相较于传统... 在人工智能技术的背景下,文章主要探讨了英语单词学习的推荐方法。其中,建立了1个基于人工智能的英语单词学习推荐模型,该模型利用用户的学习行为数据和单词特征进行训练,旨在为用户提供个性化的单词推荐。实验验证结果显示,相较于传统方法,该模型具有更高的准确性和可靠性,能够有效提升英语单词学习的效果。 展开更多
关键词 人工智能 英语单词 推荐模型 模型构建
下载PDF
基于对抗训练的事件要素识别方法
18
作者 廖涛 沈文龙 +1 位作者 张顺香 马文祥 《计算机工程与设计》 北大核心 2024年第2期540-545,共6页
针对目前大多数事件要素识别模型未考虑词级别的语义信息,及模型鲁棒性不高的问题,提出一种融合词信息和对抗训练的事件要素识别方法。将Bert(bidirectional encode representations from transformers)预训练语言模型生成的字向量与分... 针对目前大多数事件要素识别模型未考虑词级别的语义信息,及模型鲁棒性不高的问题,提出一种融合词信息和对抗训练的事件要素识别方法。将Bert(bidirectional encode representations from transformers)预训练语言模型生成的字向量与分词信息进行融合,在得到的融合向量中添加扰动因子产生对抗样本,将对抗样本与融合向量表示作为编码层的输入;采用BiGRU(bidirectional gating recurrent unit)网络对输入的文本进行编码,丰富文本的上下文语义信息;采用CRF(conditional random field)函数计算完成事件要素的识别任务。在CEC(Chinese emergency corpus)中文突发事件语料库上的实验结果表明,该方法能够取得较好的效果。 展开更多
关键词 事件要素识别 鲁棒性 词信息 对抗训练 预训练语言模型 扰动因子 上下文语义信息
下载PDF
基于提示学习的篇章级事件论元抽取方法研究
19
作者 薛继伟 胡馨元 薛鹏杰 《计算机技术与发展》 2024年第6期125-131,共7页
事件论元抽取是指在自然语言文本中识别出事件论元及其对应的角色,是事件抽取的关键。传统事件论元抽取方法将抽取范围局限在单个句子中,在面对长文本中论元分散的情况时表现不佳。近年来,有研究者提出基于提示学习的篇章级事件论元抽... 事件论元抽取是指在自然语言文本中识别出事件论元及其对应的角色,是事件抽取的关键。传统事件论元抽取方法将抽取范围局限在单个句子中,在面对长文本中论元分散的情况时表现不佳。近年来,有研究者提出基于提示学习的篇章级事件论元抽取方法,能根据提示信息在输入文本中获取事件论元,实现事件论元抽取。然而现有基于提示学习的方法大多是由人工手动构建提示模板,模板结构固定容易导致论元抽取错误。针对以上不足,该文在以往基于提示学习研究的基础上,提出以文本触发词为关键实现模板自动构建的方法,并在输入文本中融入事件角色语义信息,使模型能更好地捕获文本语义特征,提高事件论元抽取准确率。在篇章级数据集RAMS上的实验结果表明,该模型在事件论元识别和事件论元分类的F1值分别达到54.3%和48.1%,相比最优的基准方法分别提升了1.8百分点和1.2百分点,验证了模型的有效性。 展开更多
关键词 论元抽取 提示学习 触发词 跨度选择器 预训练语言模型
下载PDF
融合双通道的语义信息的方面级情感分析
20
作者 廖列法 张文豪 《计算机工程与设计》 北大核心 2024年第7期2228-2234,共7页
针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;... 针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;使用语义注意力融合双通道中不同层次的语义信息,将融合后的语义信息再次分别融入全局信息和句子信息;根据每个通道语义信息的不同分别提取相应的特征信息。在3个基准数据集上的实验结果表明,该模型的性能优于其它模型。 展开更多
关键词 方面级情感分析 方面词 预训练模型 双通道 语义信息 语义注意力 特征信息
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部