期刊文献+
共找到13,345篇文章
< 1 2 250 >
每页显示 20 50 100
Physics-Based Active Learning for Design Space Exploration and Surrogate Construction for Multiparametric Optimization
1
作者 Sergio Torregrosa Victor Champaney +2 位作者 Amine Ammar Vincent Herbert Francisco Chinesta 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1899-1923,共25页
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice... The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied. 展开更多
关键词 Active learning(AL) Artificial intelligence(AI) OPTIMIZATION Physics based
下载PDF
Effects of Health Education with Problem-Based Learning Approaches on the Knowledge, Attitude, Practice and Coping Skills of Women with High-Risk Pregnancies in Plateau Areas
2
作者 Ying Wu Suolang Sezhen +5 位作者 Renqing Yuzhen Hong Wei Zhijuan Zhan Baima Hongying Yuhong Zhang Lihong Liu 《Open Journal of Nursing》 2024年第5期192-199,共8页
Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approach... Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification. 展开更多
关键词 Plateau Areas Patients with High-Risk Pregnancies Problem-based learning Health Education Health Knowledge Attitude and Practice Coping Skills
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
3
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
Triplet Label Based Image Retrieval Using Deep Learning in Large Database 被引量:1
4
作者 K.Nithya V.Rajamani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2655-2666,共12页
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi... Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets. 展开更多
关键词 Image retrieval deep learning point attention based triplet network correlating resolutions classification region of interest
下载PDF
Aspect based sentiment analysis using multi-criteria decision-making and deep learning under COVID-19 pandemic in India 被引量:1
5
作者 Rakesh Dutta Nilanjana Das +1 位作者 Mukta Majumder Biswapati Jana 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期219-234,共16页
The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to st... The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst. 展开更多
关键词 aspect based sentiment analysis bi-directional gated recurrent unit COVID-19 deep learning k-means clustering multi-criteria decision-making natural language processing
下载PDF
Ensemble Based Learning with Accurate Motion Contrast Detection
6
作者 M.Indirani S.Shankar 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1657-1674,共18页
Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Parti... Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization(SPSOM)and Incremental Deep Convolution Neural Networks(IDCNN)for detecting multiple objects.However,the study considered opticalflows resulting in assessing motion contrasts.Existing methods have issue with accuracy and error rates in motion contrast detection.Hence,the overall object detection performance is reduced significantly.Thus,consideration of object motions in videos efficiently is a critical issue to be solved.To overcome the above mentioned problems,this research work proposes a method involving ensemble approaches to and detect objects efficiently from video streams.This work uses a system modeled on swarm optimization and ensemble learning called Spatiotemporal Glowworm Swarm Optimization Model(SGSOM)for detecting multiple significant objects.A steady quality in motion contrasts is maintained in this work by using Chebyshev distance matrix.The proposed system achieves global optimization in its multiple object detection by exploiting spatial/temporal cues and local constraints.Its experimental results show that the proposed system scores 4.8%in Mean Absolute Error(MAE)while achieving 86%in accuracy,81.5%in precision,85%in recall and 81.6%in F-measure and thus proving its utility in detecting multiple objects. 展开更多
关键词 Multiple significant objects ensemble based learning modified pooling layer based convolutional neural network spatiotemporal glowworm swarm optimization model
下载PDF
A hybrid agent⁃based machine learning method for human⁃centred energy consumption prediction
7
作者 Qingyao Qiao 《建筑节能(中英文)》 CAS 2023年第3期41-41,共1页
Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management syst... Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection. 展开更多
关键词 Building energy consumption PREDICTION Machine learning Agent⁃based modelling Occupant behaviour
下载PDF
Exploring the Application Effect of Flipped Classroom Combined with Problem-Based Learning Teaching Method in Clinical Skills Teaching of Standardized Training for Resident Doctors of Traditional Chinese Medicine 被引量:1
8
作者 Jingjing Tang 《Journal of Biosciences and Medicines》 CAS 2023年第2期169-176,共8页
Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M... Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn. 展开更多
关键词 Standardized Training for Resident Doctors of Traditional Chinese Medicine Clinical Skills Teaching Flipped Classroom Problem-based learning Teaching Method
下载PDF
A Research of the Course “Taishan Cultural Communication with the World” under Blended Learning Model and Outcome-Based Education Concept
9
作者 Fen Tian 《Open Journal of Applied Sciences》 CAS 2023年第4期529-537,共9页
The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper use... The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper uses the data from one semester to state how to carry out the program and the good results. At the same time disadvantages are also the points that should be taken into consideration. From the teaching and learning practice, students have benefited from the online videos, complementary materials and discussions;they need to be guided as well, especially the guidance offline to make up. Furthermore, the balance of time online and offline is a great challenge. 展开更多
关键词 Blended learning Outcome-based Education Taishan Cultural Communication with the World
下载PDF
An Experimental Study of Network-based Language Learning in Less-developed Areas
10
作者 王正华 《海外英语》 2012年第12X期7-9,共3页
The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effec... The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effectively with the help of modern technology especially in less-developed areas.This thesis focuses on network-based experimental study.The research shows that the students under NBLL environment have cultivated the capabilities in information collection,computer operation,and information evaluation,as well as the abilities in problem solving,reasoning with criticism,and cooperating with others. 展开更多
关键词 the ENGAGEMENT theory NETwork-based LANGUAGE learn
下载PDF
Where Have Network-based Self-learning Classes Gone?——Reflections & Expectations on the Employment of Network-based Self-learning Classes
11
作者 吴雪茵 《海外英语》 2012年第18期279-280,共2页
To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time wen... To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening. 展开更多
关键词 NETwork-based SELF-learning listening improvement
下载PDF
TBL(Team-based learning)教学法在局解教学中的设计与评价 被引量:72
12
作者 景玉宏 尹洁 +2 位作者 刘向文 张朗 宋焱峰 《中国高等医学教育》 2010年第9期96-98,共3页
为适应现代医学发展的要求,在日益增多的医学教学改革尝试中,TBL教学法引起人们的关注。本文通过在局部解剖学教学中开展TBL教学,并且和传统教学方法做了对比研究。结果提示在局部解剖学教学中采用TBL教学法有利于提高学生学习兴趣及解... 为适应现代医学发展的要求,在日益增多的医学教学改革尝试中,TBL教学法引起人们的关注。本文通过在局部解剖学教学中开展TBL教学,并且和传统教学方法做了对比研究。结果提示在局部解剖学教学中采用TBL教学法有利于提高学生学习兴趣及解决问题的能力,有利于动态评价学生的学习状态。 展开更多
关键词 医学教育 局解教学 TBL教学法
下载PDF
PBL(Problem-based Learning)教学法道路规划与几何设计教学中的应用与探索 被引量:1
13
作者 张兰芳 方守恩 王俊骅 《教育教学论坛》 2016年第39期127-128,共2页
立足于道路规划与几何设计信息量大,涉及专业基础知识广、实践性强等特点,将PBL教学法在教学中进行了应用与探索,从教师设计问题、组建学习小组、问题探索与交流、教师总结评价等方面进行了教学设计和应用研究,实践证明PBL教学有助于提... 立足于道路规划与几何设计信息量大,涉及专业基础知识广、实践性强等特点,将PBL教学法在教学中进行了应用与探索,从教师设计问题、组建学习小组、问题探索与交流、教师总结评价等方面进行了教学设计和应用研究,实践证明PBL教学有助于提高学生的自主创新学习能力及学习的积极性,显著提升了教学效果。 展开更多
关键词 PBL(Problem based learning)教学法 道路规划与几何设计 自主学习
下载PDF
Understanding the creep behaviors and mechanisms of Mg-Gd-Zn alloys via machine learning
14
作者 Shuxia Ouyang Xiaobing Hu +7 位作者 Qingfeng Wu Jeong Ah Lee Jae Heung Lee Chenjin Zhang Chunhui Wang Hyoung Seop Kim Guangyu Yang Wanqi Jie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3281-3291,共11页
Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with co... Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys. 展开更多
关键词 Mg-Gd-Zn based alloys Machine learning Creep rate Creep mechanism Constitutive equation
下载PDF
长学制传染病教学中TBL(Team-Based Learning)模式的应用和改进 被引量:8
15
作者 张晓红 麦丽 +3 位作者 赵志新 赖菁 周韵 高志良 《中国高等医学教育》 2014年第2期8-9,共2页
目的:研究TBL教学在八年制学生传染病教学中的应用成效及存在的问题,为改进和推广该教学方法提供参考依据。方法:对2006级八年制学生部分理论课采用TBL教学,进行闭卷考试及问卷调查。结论:与传统教学模式相比,TBL教学对提高学生学习兴趣... 目的:研究TBL教学在八年制学生传染病教学中的应用成效及存在的问题,为改进和推广该教学方法提供参考依据。方法:对2006级八年制学生部分理论课采用TBL教学,进行闭卷考试及问卷调查。结论:与传统教学模式相比,TBL教学对提高学生学习兴趣,培养学分分析问题、解决问题、沟通能力和团队协作精神以及提高考试成绩均有帮助。 展开更多
关键词 TBL 长学制学生 传染病学
下载PDF
Prediction of Lubricant Physicochemical Properties Based on Gaussian Copula Data Expansion
16
作者 Feng Xin Yang Rui +1 位作者 Xie Peiyuan Xia Yanqiu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期161-174,共14页
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO... The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability. 展开更多
关键词 base oil data augmentation machine learning performance prediction seagull algorithm
下载PDF
A Study on the Explainability of Thyroid Cancer Prediction:SHAP Values and Association-Rule Based Feature Integration Framework
17
作者 Sujithra Sankar S.Sathyalakshmi 《Computers, Materials & Continua》 SCIE EI 2024年第5期3111-3138,共28页
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroi... In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications. 展开更多
关键词 Explainable AI machine learning clinical decision support systems thyroid cancer association-rule based framework SHAP values classification and prediction
下载PDF
Language Learning Strategies in a Network-based Environment
18
作者 王小萍 《海外英语》 2017年第22期9-13,15,共6页
With the swift development of network technology, research on how to integrate network technology into language learning has become a trend. This paper examines whether the application of language learning strategy(LL... With the swift development of network technology, research on how to integrate network technology into language learning has become a trend. This paper examines whether the application of language learning strategy(LLS) in the networkbased environment has incomparable superiority. Beginning with the literature review, it presents an analysis on similarities and differences between network-based language learning strategy(NBLLS) and non-NBLLS, and then expounds the characteristics,the influencing factors and teachers' role of NBLLS. Taking 25 participants in the group of non-NBLL and 34 in the NBLL group as the comparative survey study, the empirical result shows the new evidence that there is a little difference between the two groups in the use of LLS. The findings of this study have implications for the application of NBLLS. 展开更多
关键词 language learning strategy APPLICATION IMPLICATION NETwork-based
下载PDF
College English Teachers’ Beliefs on Network-based Language Learning
19
作者 樊海怡 《教师》 2018年第29期45-46,共2页
The advantages and disadvantages for learning English in the Network-based environment attract most researchers’concern nowadays.This study profiles college English teachers’beliefs about the networkbased language l... The advantages and disadvantages for learning English in the Network-based environment attract most researchers’concern nowadays.This study profiles college English teachers’beliefs about the networkbased language learning.The main finding is that teachers’beliefs about network-based language learning are heterogeneous and thus reflect a wide range in terms of the evolution of approaches and technology use. 展开更多
关键词 COLLEGE ENGLISH teachers’beliefs NETwork-based LANGUAGE learning
下载PDF
PBL(Project-based Learning)教学模式在高职英语自主学习课程中的应用研究 被引量:4
20
作者 查静 《漯河职业技术学院学报》 2012年第6期79-81,共3页
本文采用行动研究的方法,以武汉职业技术学院的英语听说过级自主学习课程为例,探讨如何在自主学习课程中应用PBL的教学模式改进自主学习课程的考核方式,提高学生的自主学习能力和意识。文章首先分析了自主学习课程在实施过程中遇到的问... 本文采用行动研究的方法,以武汉职业技术学院的英语听说过级自主学习课程为例,探讨如何在自主学习课程中应用PBL的教学模式改进自主学习课程的考核方式,提高学生的自主学习能力和意识。文章首先分析了自主学习课程在实施过程中遇到的问题,详细描述了PBL教学模式的总体设计构想和具体的实施步骤,并对实施的结果进行了讨论。经过统计和问卷调查结果发现,应用PBL模式后,实验班的学生的学习兴趣有了很大的提高,有利于培养他们的自主学习能力和合作精神。同时,试验前后的听力测试表明,实验班听力成绩较对照班也有了显著的提高。可见,PBL模式的应用能在一定程度上改进目前在自主学习课程中所遇到的一些问题。 展开更多
关键词 高职 项目教学模式 自主学习 听说过级 英语语言能力
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部