期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Responsibilities and Working Mechanism of National Human Rights Education and Training Bases
1
作者 CHANG JIAN 《The Journal of Human Rights》 2014年第5期12-13,共2页
On July 22, 2014, the second group of national human rights education and train- ing bases was announced,increasing the number of national bases from the previous three to a total of eight, which reflects the advancem... On July 22, 2014, the second group of national human rights education and train- ing bases was announced,increasing the number of national bases from the previous three to a total of eight, which reflects the advancement of human rights education and ~aining in China and has far-reaching significance. 展开更多
关键词 Responsibilities and working mechanism of National Human Rights Education and Training Bases
下载PDF
Hybrid working mechanism enables highly reversible Zn electrodes 被引量:1
2
作者 Libei Yuan Junnan Hao +6 位作者 Bernt Johannessen Chao Ye Fuhua Yang Chao Wu Shi-Xue Dou Hua-Kun Liu Shi-Zhang Qiao 《eScience》 2023年第2期83-92,共10页
Zn dendrite growth and water-related side reactions have been criticized to hinder actual applications of aqueous Zn-ion batteries.To address these issues,a series of Zn interfacial modifications of building solid/ele... Zn dendrite growth and water-related side reactions have been criticized to hinder actual applications of aqueous Zn-ion batteries.To address these issues,a series of Zn interfacial modifications of building solid/electrolyte interphase(SEI)and nucleation layers have been widely proposed,however,their effectiveness remains debatable.Here,we report a boron nitride(BN)/Nafion layer on the Zn surface to efficiently solve Zn problems through combining the hybrid working mechanisms of SEI and nucleation layers.In our protective layer,Nafion exhibits the SEI mechanism by blocking water from the Zn surface and providing abundant channels for rapid Zn^(2+)þtransmission,whilst BN nanosheets induce Zn deposition underneath with a preferred(002)orientation.Accordingly,dendrite-free and side-reaction-free Zn electrode with(002)deposition under the protective layer is realized for the first time,as reflected by its high reversibility with average Coulombic efficiency of 99.2%for>3000 h.The protected Zn electrode also shows excellent performance in full cells when coupling with polyaniline cathode under the strict condition of lean electrolyte addition.This work highlights insights for designing highly reversible metal electrodes towards practical applications. 展开更多
关键词 Aqueous Zn-ion batteries Hybrid working mechanism Boron nitride NAFION
原文传递
Typology and working mechanism of a hybrid power router based on power-frequency transformer electromagnetic coupling with converters
3
作者 Jinmu Lai Xin Yin +2 位作者 Xianggen Yin Jiaxuan Hu Fan Xiao 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第3期80-96,共17页
The power router(PR)is a promising piece of equipment for realizing multi-voltage level interconnection and flex-ible power control in the future distribution power grid.In this paper,a hybrid PR(HPR)topology based on... The power router(PR)is a promising piece of equipment for realizing multi-voltage level interconnection and flex-ible power control in the future distribution power grid.In this paper,a hybrid PR(HPR)topology based on power-frequency transformer electromagnetic coupling with converters is proposed for the medium distribution power grid.The power-frequency transformer is used to undertake power transmission,voltage conversion,and other main tasks,while the power electronic converters are combined to achieve active control.Equivalent magnetic and electrical circuit models are established to help discuss the operating principle of the proposed HPR.Additionally,the power flow and control principle of the HPR in different operating conditions are analyzed,with the control system design scheme presented.The theoretical analysis results are verified by MATLAB/Simulink+Plecs simulation and a controller hardware-in-the-loop study,as well as a down-scale experimental test,indicating that the proposed HPR is flexible in active voltage support and current control. 展开更多
关键词 Power router Power-frequency transformer Power electronic converter Hybrid working mechanism
原文传递
Working mechanism of a SiC nanotube NO_2 gas sensor
4
作者 丁瑞雪 杨银堂 刘帘曦 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第11期67-70,共4页
The working mechanism of sensors plays an important role in their simulation and design, which is the foundation of their applications. A model of a nanotube NO2 gas sensor system is established based on an (8, 0) s... The working mechanism of sensors plays an important role in their simulation and design, which is the foundation of their applications. A model of a nanotube NO2 gas sensor system is established based on an (8, 0) silicon carbide nanotube (SiCNT) with a NO2 molecule adsorbed. The transport properties of the system are studied with a method combining density functional theory (DFT) with the non-equilibrium Green's function (NEGF). The adsorbed gas molecule plays an important role in the transport properties of the gas sensor, which results in the formation of a transmission peak near the Fermi energy. More importantly, the adsorption leads to different voltage current characteristics of the sensor to that with no adsorption; the difference is large enough to detect the presence of NO2 gas. 展开更多
关键词 working mechanism SiCNT gas sensor non-equilibrium Green's function
原文传递
Research and Application of"Soft"Devices for Realizing Servo Amplification
5
作者 Shuwen Zhang Fei Meng 《Frontiers of Metallurgical Industry》 2024年第1期31-33,共3页
This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the ... This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the servo mechanism,and analyzes the mechanism of the servo device's implementation of the"positioning"func-tion on the control device.Intended to guide the continuous adjustment process in controlling the function/accuracy of actuator equipment and application debugging,ensuring the safe and stable operation of production equipment and facilities. 展开更多
关键词 servo amplification working mechanism APPLICATION
下载PDF
Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective 被引量:2
6
作者 Xiaolu Li Antonio Vazquez-Lopez +1 位作者 Jose Sanchez del Rio Saez De-Yi Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期106-136,共31页
Early-stage fire-warning systems(EFWSs)have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process.Substantial progress on EFWSs has been achiev... Early-stage fire-warning systems(EFWSs)have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process.Substantial progress on EFWSs has been achieved recently,and they have presented a considerable possibility for more evacuation time to control constant unintentional fire hazards in our daily life.This review mainly makes a comprehensive summary of the current EFWSs,including the working mechanisms and their performance.According to the different working mechanisms,fire alarms can be classified into graphene oxide-based fire alarms,semiconductor-based fire alarms,thermoelectric-based fire alarms,and fire alarms on other working mechanisms.Finally,the challenge and prospect for EFWSs are briefly provided by comparing the art of state of fire alarms.This work can propose a more comprehensive understanding of EFWSs and a guideline for the cutting-edge development direction of EFWSs for readers. 展开更多
关键词 Smart thermosensitive fire sensors working mechanism Response time Signal conversion
下载PDF
Superficial Inquiry on the Mechanism of Psychological Health Education of College Students under the Background of Anti Epidemic
7
作者 Tao Wang Bo Ai 《Journal of Contemporary Educational Research》 2020年第5期1-5,共5页
Psychological health education has been highly valued by the party and the state.During the fight against the COVID-19,colleges and universities have made a beneficial exploration in carrying out psychological health ... Psychological health education has been highly valued by the party and the state.During the fight against the COVID-19,colleges and universities have made a beneficial exploration in carrying out psychological health education.In older to further understand the impact of the epidemic on the psychological health of college students,a survey was carried out based on questionnaire survey,depth interview and expert consultation.The survey found that the epidemic increased the psychological pressure and posed new challenges to the psychological health education in colleges and universities.Based on the analysis of the causes from the four aspects of society,family,college and individual,this thesis put forwards some suggestions on how to effectively carry out the psychological health education of college students in the context of fighting against the epidemic. 展开更多
关键词 Psychological health education of college students working mechanism of psychological education
下载PDF
Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators 被引量:2
8
作者 Chuncai Shan Kaixian Li +1 位作者 Yuntao Cheng Chenguo Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期381-404,共24页
As hundreds of millions of distributed devices appear in every corner of our lives for information collection and transmission in big data era,the biggest challenge is the energy supply for these devices and the signa... As hundreds of millions of distributed devices appear in every corner of our lives for information collection and transmission in big data era,the biggest challenge is the energy supply for these devices and the signal transmission of sensors.Triboelectric nanogenerator(TENG)as a new energy technology meets the increasing demand of today’s distributed energy supply due to its ability to convert the ambient mechanical energy into electric energy.Meanwhile,TENG can also be used as a sensing system.Direct current triboelectric nanogenerator(DC-TENG)can directly supply power to electronic devices without additional rectification.It has been one of the most important developments of TENG in recent years.Herein,we review recent progress in the novel structure designs,working mechanism and corresponding method to improve the output performance for DC-TENGs from the aspect of mechanical rectifier,tribovoltaic effect,phase control,mechanical delay switch and air-discharge.The basic theory of each mode,key merits and potential development are discussed in detail.At last,we provide a guideline for future challenges of DC-TENGs,and a strategy for improving the output performance for commercial applications. 展开更多
关键词 Triboelectric nanogenerators Direct current working mechanism
下载PDF
Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation
9
作者 Yingjie Zhao Xing Yin +4 位作者 Pengwei Li Ziqiu Ren Zhenkun Gu Yiqiang Zhang Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期565-594,共30页
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement... Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. 展开更多
关键词 Perovskite materials Crystal structure design Micro/nano-structure manipulation working mechanism Multifunctional photodetectors
下载PDF
Latest progresses and the application of various electrolytes in high-performance solid-state lithium-sulfur batteries
10
作者 Yanan Li Nanping Deng +6 位作者 Hao Wang Qiang Zeng Shengbin Luo Yongbing Jin Quanxiang Li Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期170-197,I0005,共29页
With the emergence of some solid electrolytes(SSEs)with high ionic conductivity being comparable to liquid electrolytes,solid-state lithium-sulfur batteries(SSLSBs)have been widely regarded as one of the most promisin... With the emergence of some solid electrolytes(SSEs)with high ionic conductivity being comparable to liquid electrolytes,solid-state lithium-sulfur batteries(SSLSBs)have been widely regarded as one of the most promising candidates for the next generation of power generation energy storage batteries,and have been extensively researched.Though many fundamental and technological issues still need to be resolved to develop commercially viable technologies,SSLSBs using SSEs are expected to address the present limitations and achieve high energy and power density while improving safety,which is very attractive to large-scale energy storage systems.SSLSBs have been developed for many years.However,there are few systematic discussions related to the working mechanism of action of various electrolytes in SSLSBs and the defects and the corresponding solutions of various electrolytes.To fill this gap,it is very meaningful to review the recent progress of SSEs in SSLSBs.In this review,we comprehensively investigate and summarize the application of SSEs in LSBs to determine the differences which still exist between current progresses and real-world requirements,and comprehensively describe the mechanism of action of SSLSBs,including lithium-ion transport,interfacial contact,and catalytic conversion mechanisms.More importantly,the selection of solid electrolyte materials and the novel design of structures are reviewed and the properties of various SSEs are elucidated.Finally,the prospects and possible future research directions of SSLSBs including designing high electronic/ionic conductivity for cathodes,optimizing electrolytes and developing novel electrolytes with excellent properties,improving electrode/-electrolyte interface stability and enhancing interfacial dynamics between electrolyte and anode,using more advanced test equipment and characterization techniques to analyze conduction mechanism of Li^(+)in SSEs are presented.It is hoped that this review can arouse people’s attention and enlighten the development of functional materials and novel structures of SSEs in the next step. 展开更多
关键词 Solid-state lithium sulfur batteries working mechanism Solid-state electrolytes Outstanding electrochemical performance Excellent safety
下载PDF
Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials 被引量:1
11
作者 Longshan Li Dingming Wang +7 位作者 Gaojie Xu Qian Zhou Jun Ma Jianjun Zhang Aobing Du Zili Cui Xinhong Zhou Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期280-292,共13页
In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2... In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA))have been arousing great interests to improve the energy density of LIBs.However,these Nirich cathodes always suffer from rapid capacity degradation induced by unstable cathode-electrolyte interphase(CEI)layer and destruction of bulk crystal structure.Therefore,varied electrode/electrolyte interface engineering strategies(such as electrolyte formulation,material coating or doping)have been developed for Ni-rich cathodes protection.Among them,developing electrolyte functional additives has been proven to be a simple,effective,and economic method to improve the cycling stability of Nirich cathodes.This is achieved by removing unfavorable species(such as HF,H_(2)O)or constructing a stable and protective CEI layer against unfavorable reactive species(such as HF,H_(2)O).Herein,this review mainly introduces the varied classes of electrolyte functional additives and their working mechanism for interfacial engineering of Ni-rich cathodes.Especially,key favorable species for stabilizing CEI layer are summarized.More importantly,we put forward perspectives for screening and customizing ideal functional additives for high performance Ni-rich cathodes based LIBs. 展开更多
关键词 Nickel-rich layered oxide cathode Electrolyte additive Functional group working mechanism Cathode-electrolyte interphase(CEI)
下载PDF
Research progress and development direction of low-temperature drilling fluid for Antarctic region 被引量:1
12
作者 SUN Jinsheng WANG Zonglun +5 位作者 LIU Jingping LYU Kaihe HUANG Xianbin ZHANG Xianfa SHAO Zihua HUANG Ning 《Petroleum Exploration and Development》 CSCD 2022年第5期1161-1168,共8页
By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current pro... By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current problems of the drilling fluid have been sorted out, and the development direction of the drilling fluid has been pointed out. Drilling in the Antarctic region mainly includes drilling in snow, ice and subglacial rock formations, and drilling in Antarctic low temperature conditions will face problems in four aspects:(1) low temperature and large temperature changes in the drilling area;(2) likely well leakage and drillstring-sticking in the snow layer, creep in the ice layer, ice chip gathering jamming in the warm ice layer, well wall collapse in the subglacial rock formations;(3) lack of infrastructure and difficulty in logistical support;(4) fragile environment and low carrying capacity. After years of development, progresses have been made on low-temperature drilling fluids for the Antarctic region. Low-temperature petroleum-based drilling fluid, ethanol/ethylene glycol-based drilling fluid, ester-based drilling fluid and silicone oil-based drilling fluid have been developed. However, these drilling fluids have problems such as insufficient low-temperature tolerance, low environmental performance and weak wellbore stability, etc. In order to meet the performance requirements of drilling fluid under low-temperature conditions in Antarctic region, the working mechanisms of low-temperature drilling fluid must be examined in depth;environment-friendly low-temperature base fluid of drilling fluid and related additives must be developed to prepare environmentally friendly low temperature drilling fluid systems;multi-functional integrated adjustment method for drilling fluid must be worked out to ensure well wall stability and improve cutting-carry capacity when drilling ice formations and ice-rock interlayers;and on-site support operation codes must be established to provide technical support for Antarctic drilling. 展开更多
关键词 Antarctic region snow and ice formation subglacial rock formation low-temperature drilling fluid drilling fluid system working mechanism regulation method construction specification
下载PDF
Economic“Activity-Silent”Synaptic Mechanisms of Working Memory
13
作者 Xiao Lin Ying Han +2 位作者 Peng Li Le Shi Lin Lu 《Neuroscience Bulletin》 SCIE CAS CSCD 2017年第6期760-762,共3页
Working memory(WM)allows humans to hold necessary information in temporary storage and manipulate such information online for higher-order cognitive functions,such as language understanding,decision making,and probl... Working memory(WM)allows humans to hold necessary information in temporary storage and manipulate such information online for higher-order cognitive functions,such as language understanding,decision making,and problem solving.Since its first appearance in the science of psychology in the 1960s,many theories have sought to elucidate the nature of WM.The most accepted model is 展开更多
关键词 TMS UMI Synaptic mechanisms of working Memory Activity-Silent Economic
原文传递
MY WORK IN THE FIELD OF FLUID MECHANICS
14
作者 Zhou Heng(Tianjin University) 《Bulletin of the Chinese Academy of Sciences》 1996年第1期69-69,共1页
I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was ... I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was in cybernetics, resulting in the publication of the first Chinese paper concerning optimal control. After 1963, I worked on the theory of hydrodynamic stability. My explorative thrust is at the eigenvalues of the Orr Sommerfeld Equation,a non-self adjoint problem in 展开更多
关键词 MY WORK IN THE FIELD OF FLUID MECHANICS
下载PDF
Emerging direct current triboelectric nanogenerator for high-entropy mechanical energy harvesting
15
作者 CHEN Jie GUO RuiLong GUO HengYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1297-1316,共20页
In the era of the Internet of Things(IoT),the provision of sustainable power to distributed,mobile,and low-power-consumption electronic devices is a critical challenge.To overcome this challenge,the triboelectric nano... In the era of the Internet of Things(IoT),the provision of sustainable power to distributed,mobile,and low-power-consumption electronic devices is a critical challenge.To overcome this challenge,the triboelectric nanogenerator(TENG),a highly efficient high-entropy mechanical energy harvesting device,was developed in 2012.This device enables the direct conversion of irregular and low-frequency mechanical energy into pulsed alternating current(AC)signals.However,the incompatibility of most electronic devices with AC signals necessitates rectifier circuits or generators that deliver direct current(DC)signals.In recent years,DC-TENGs have undergone extensive development,achieving significant milestones in various application fields while also facing crucial challenges that require solutions.In this review,three categories of DC-TENG devices with distinct operating mechanisms are comprehensively explored:multiphase coupling,mechanical rectification,and air breakdown.Their typical structures and working mechanisms are thoroughly discussed,and specific output performance limitations,along with corresponding optimization strategies,are identified.Furthermore,the applications of DC-TENGs in various scenarios are summarized.Finally,the challenges faced by DC-TENGs and potential solutions are analyzed to guide further advancements in this technology. 展开更多
关键词 TENG direct current working mechanisms output performance limitations optimization strategies
原文传递
EXPERIMENTAL STUDY ON LUBRICATION BEHAVIOR OF DOUBLE ENVELOPING HOUK GLASSWOKM GEARING
16
作者 He Huinong,Zhou Yinsheng,Quan Yongxin,( Zhejiang, University) Wei Yunlong, Cao Xingjin, (Chongqing, University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1996年第1期57-62,共3页
The lubrication behavior of double enveloping hourglass worm gearing is studied experimently. The effects of rotational speed of the worm and load on the formation of the fluid film between engagement tooth ... The lubrication behavior of double enveloping hourglass worm gearing is studied experimently. The effects of rotational speed of the worm and load on the formation of the fluid film between engagement tooth surfaces are investigated in detail. and working angle of this worm gearing is also analyzed. Some beneficial results are obtained。 展开更多
关键词 Double enveloping hourglass worm gearing Lubrication mechanism working angle Tooth root strain
全文增补中
Tensile behavior and deformation mechanism of quenching and partitioning treated steels at different deforming temperatures 被引量:1
17
作者 Lian bo Luo Wei Li +2 位作者 Yu Gong Li Wang Xue-jun Jin 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第11期1104-1108,共5页
The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing... The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation. 展开更多
关键词 Quenching and partitioning treated steel Mechanical property Deforming temperature Retained austenite Work hardening behavior
原文传递
Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review
18
作者 Fuqiang Liu Shengtao Jiang +1 位作者 Shijie You Yanbiao Liu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第2期39-58,共20页
Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promisi... Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies. 展开更多
关键词 Perfluorinated compounds Electrochemical approach working mechanisms Impacting factor Coupled process
原文传递
An in-depth mechanistic insight into the redox reaction and degradation of aqueous Zn-MnO_(2) batteries
19
作者 Zongyuan You Wei Hua +2 位作者 Na Li Huanyan Liu Jian-Gan Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期531-536,共6页
Rechargeable aqueous Zn/MnO_(2)batteries raise massive research activities in recent years. However, both the working principle and the degradation mechanism of this battery chemistry are still under debate. Herein, w... Rechargeable aqueous Zn/MnO_(2)batteries raise massive research activities in recent years. However, both the working principle and the degradation mechanism of this battery chemistry are still under debate. Herein, we provide an in-depth electrochemical and structural investigation on this controversial issue based on α-MnO_(2)crystalline nanowires. Mechanistic analysis substantiates a two-electron reaction pathway of Mn2+/Mn4+redox couple from part of MnO_(2)accompanying with a reversible precipitation/dissolution of flaky zinc sulfate hydroxide(ZSH) during the discharge/charge processes. The formation of the ZSH layer is double-edged, which passivates the deep dissolution of MnO_(2)upon discharging,but promotes the electrochemical deposition kinetics of active MnO_(2)upon charging. The cell degradation originates primarily from the corrosion failure of metallic zinc anode and the accumulation of irreversible ZnMn2O_(4)phases on the cathode. The addition of MnSO_(4)to the electrolyte could afford supplementary capacity contribution via electro-oxidation of Mn2+. However, a high MnSO_(4)concentration will expedite the cell failure by corroding the metallic zinc anodes. The present study will shed a fundamental insight on developing new strategies toward practically viable Zn/MnO_(2)batteries. 展开更多
关键词 Zinc-ion battery MnO_(2)cathode working mechanism Degradation mechanism Zinc anode
原文传递
Effect of Extrusion Temperature on the Microstructure and Mechanical Properties of Mg–5Al–2Ca Alloy 被引量:3
20
作者 Kun Su Kun-kun Deng +4 位作者 Fang-jun Xu Kai-bo Nie Li Zhang Xiao Zhang Wei-jian Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1015-1023,共9页
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amo... In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K. 展开更多
关键词 Mg–Al–Ca alloy Extrusion Microstructure Mechanical properties Work hardening
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部