High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this p...The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va...For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the e...In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the error between calculating and real values. on the base of the application of the formulas mentioned above, the problem about lack of airflow in the working face 2712 was solved successfully in Xiandewang Coal Mine.展开更多
The difficult problem of automatically welding nipples onto the header is first analyzed in this paper, and then the overall structure and operating principle of the robot working unit are introduced. The robot and th...The difficult problem of automatically welding nipples onto the header is first analyzed in this paper, and then the overall structure and operating principle of the robot working unit are introduced. The robot and the measuring device are located by employing the traveling lorry, and this unit enables the robot to adjust the tracks according to the errors received from the measuring device, and then the nipples are welded properly. This paper emphases on the development of the master-slave control system, in which the prograrmmable Logic Controller (PLC) is used as the master computer.展开更多
Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through comp...Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through computer usage to develop simulation program and simulate behaviors of system operation can give designed system which suits for user’s need. Also, the present study aims to develop dynamic simulation program of solid adsorption refrigeration system operated by solar assistance to simulate behaviors of system operation and its performance. Flat plate collectror is utilized to provide thermal energy for system’s adsorber and activated carbon/methanol is used to be a suitable working pair. Simulation procedure starts with various solar radiation intensities as input energy on solar collector and water is used as collector working fluid. Behavior of system operation can be considered to be 4 steps as isosteric heating, isobaric desorption, isosteric cooling and isobaric adsorption, respectively. This research studies the effect of varying solar radiation intensity on temperature, pressure of adsorber, adsorption ratio at each steps of system operated ranging from 6:00 am (the first day) to 6:00 am (the next day) and system performance which is defined as coefficient of performance, COP. In addition, the simulation result shows monthly average COP of 0.43 compared to a result of another previous research work under the same operating condition and the percentage error is 7.5%.展开更多
The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based...The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based on working process systematization of the practice teaching quality is established, the management of quality evaluation system and the project of the monitoring are put forward.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation a...Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.展开更多
BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to st...BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to statistics,self-harm and suicide,for which there is no effective intervention,are the second leading causes of death.AIM To explore the relationship between different elements and levels of physical activity and college students’depression-symptom-specific working memory indicators.METHODS Of 143 college students were analyzed using the Beck Depression Self-Rating Scale,the Physical Activity Rating Scale,and the Working Memory Task.RESULTS There was a significant difference between college students with depressive symptoms and healthy college students in completing verbal and spatial working memory(SWM)tasks correctly(all P<0.01).Physical Activity Scale-3 scores were significantly and positively correlated with the correct rate of the verbal working memory task(r=0.166)and the correct rate of the SWM task(r=0.210)(all P<0.05).There were significant differences in the correct rates of verbal and SWM tasks according to different exercise intensities(all P<0.05)and different exercise durations(all P<0.05),and no significant differences in the correct rates of verbal and SWM tasks by exercise frequency(all P>0.05).CONCLUSION An increase in physical exercise among college students,particularly medium-and high-intensity exercise and exercise of 30 min or more,can improve the correct rate of completing working memory tasks.展开更多
This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,m...This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,mind wandering(MW),in the course of reading.Sixty first-year university non-English majors participated in the study.A two-factor mixed experimental design of 2(text difficulty:difficult and simple)×2(WMC:high/large and low/small)was employed.Results revealed that 1)the main and interaction effects of WMC and text difficulty on voluntary MW were significant,whereas those on involuntary MW were not;2)while reading the easy texts,the involuntary MW of high-WMC individuals was less frequent than that of low-WMC ones,whereas while reading the difficult ones,the direct relationship between WMC and involuntary MW was not found;and that 3)high-WMC individuals had a lower overall rate of MW and better reading performance than low-WMC individuals did,but with increasing text difficulty,their rates of overall MW and voluntary MW were getting higher and higher,and the reading performance was getting lower and lower.These results lend support to WM theory and have pedagogical implications for the instruction of L2 reading.展开更多
The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018...The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018,this paper measured the development level of the digital economy in China from the perspectives of internet development and digital financial inclusion,and tested the mechanisms of how the digital economy affected rural residents’working hours.The results showed that the digital economy extended rural residents’working hours by expanding information channels and enhancing human capital,and this mechanism was affected by heterogeneity in rural residents’educational background,age,and social capital.Building on these findings,this paper holds that to increase rural residents’income by extending their working hours and achieving common prosperity for all,it is necessary to expand the opportunities for rural residents to participate in skills training and promote their accumulation of human capital.展开更多
Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line leng...Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of li...Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.展开更多
BACKGROUND Lateral ankle sprains are the most common traumatic musculoskeletal injuries of the lower extremity,with an incidence rate of 15%-20%.The high incidence and prevalence highlights the economic impact of this...BACKGROUND Lateral ankle sprains are the most common traumatic musculoskeletal injuries of the lower extremity,with an incidence rate of 15%-20%.The high incidence and prevalence highlights the economic impact of this injury.Ankle sprains lead to a high socioeconomic burden due to the combination of the high injury incidence and high medical expenses.Up to 40%of patients who suffer from an ankle sprain develop chronic ankle instability.Chronic instability can lead to prolonged periods of pain,immobility and injury recurrence.Identification of factors that influence return to work(RTW)and return to sports(RTS)after a lateral ankle sprain(LAS)may help seriously reduce healthcare costs.AIM To explore which factors may potentially affect RTW and RTS after sustaining an LAS.METHODS EMBASE and PubMed were systematically searched for relevant studies published until June 2023.Inclusion criteria were as follows:(1)Injury including LAS or chronic ankle instability;(2)Described any form of treatment;(3)Assessment of RTW or RTS;(4)Studies published in English;and(5)Study designs including randomized controlled clinical trials,clinical trials or cohort studies.Exclusion criteria were:(1)Studies involving children(age<16 year);or(2)Patients with concomitant ankle injury besides lateral ankle ligament damage.A quality assessment was performed for each of the included studies using established risk of bias tools.Additionally quality of evidence was assessed using the GRADEpro tool in cases where outcomes were included in the quantitative analysis.A best evidence synthesis was performed in cases of qualitative outcome analysis.For all studied outcomes suitable for quantitative analysis a forest plot was created to calculate the effect on RTW and RTS.RESULTS A total of 8904 patients were included in 21 studies,10 randomized controlled trials,7 retrospective cohort studies and 4 prospective cohort studies.Fifteen studies were eligible for meta-analysis.The overall RTS rate ranged were 80%and 83%in the all treatments pool and surgical treatments pool,respectively.The pooled mean days to RTS ranged from 23-93 d.The overall RTW rate was 89%.The pooled mean time to RTW ranged from 5.8-8.1 d.For patients with chronic ankle instability,higher preoperative motivation was the sole factor significantly and independently(P=0.001)associated with the rate of and time to RTS following ligament repair or reconstruction.Higher body mass index was identified as a significant factor(P=0.04)linked to not resuming sports or returning at a lower level(median 24,range 20-37),compared to those who resumed at the same or higher level(median 23,range 17-38).Patients with a history of psychological illness or brain injury,experienced a delay in their rehabilitation process for sprains with fractures and unspecified sprains.The extent of the delayed rehabilitation was directly proportional to the increased likelihood of experiencing a recurrence of the ankle sprain and the number of ankle-related medical visits.We also observed that 10%of athletes who did return to sport after lateral ankle sprain without fractures described non-ankle-related reasons for not returning.CONCLUSION All treatments yielded comparable results,with each treatment potentially offering unique advantages or benefits.Preoperative motivation may influence rehabilitation after LAS.Grading which factor had a greater impact was not possible due to the lack of comparability among the included patients.展开更多
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
文摘The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金Project (2012AA053001) supported by High-tech Research and Development Program of China
文摘For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
文摘In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the error between calculating and real values. on the base of the application of the formulas mentioned above, the problem about lack of airflow in the working face 2712 was solved successfully in Xiandewang Coal Mine.
文摘The difficult problem of automatically welding nipples onto the header is first analyzed in this paper, and then the overall structure and operating principle of the robot working unit are introduced. The robot and the measuring device are located by employing the traveling lorry, and this unit enables the robot to adjust the tracks according to the errors received from the measuring device, and then the nipples are welded properly. This paper emphases on the development of the master-slave control system, in which the prograrmmable Logic Controller (PLC) is used as the master computer.
文摘Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through computer usage to develop simulation program and simulate behaviors of system operation can give designed system which suits for user’s need. Also, the present study aims to develop dynamic simulation program of solid adsorption refrigeration system operated by solar assistance to simulate behaviors of system operation and its performance. Flat plate collectror is utilized to provide thermal energy for system’s adsorber and activated carbon/methanol is used to be a suitable working pair. Simulation procedure starts with various solar radiation intensities as input energy on solar collector and water is used as collector working fluid. Behavior of system operation can be considered to be 4 steps as isosteric heating, isobaric desorption, isosteric cooling and isobaric adsorption, respectively. This research studies the effect of varying solar radiation intensity on temperature, pressure of adsorber, adsorption ratio at each steps of system operated ranging from 6:00 am (the first day) to 6:00 am (the next day) and system performance which is defined as coefficient of performance, COP. In addition, the simulation result shows monthly average COP of 0.43 compared to a result of another previous research work under the same operating condition and the percentage error is 7.5%.
文摘The design philosophy based on the working process systematization, the feature of practice teaching is analyzed the principles of practice teaching quality evaluation system are summed up. The evaluation system based on working process systematization of the practice teaching quality is established, the management of quality evaluation system and the project of the monitoring are put forward.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
基金supported by the National Key Research and Development Program of China(Program Number 2021YFB4000100)the Beijing Postdoctoral Research Foundation(Grant Number 2023-ZZ-63).
文摘Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.
文摘BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to statistics,self-harm and suicide,for which there is no effective intervention,are the second leading causes of death.AIM To explore the relationship between different elements and levels of physical activity and college students’depression-symptom-specific working memory indicators.METHODS Of 143 college students were analyzed using the Beck Depression Self-Rating Scale,the Physical Activity Rating Scale,and the Working Memory Task.RESULTS There was a significant difference between college students with depressive symptoms and healthy college students in completing verbal and spatial working memory(SWM)tasks correctly(all P<0.01).Physical Activity Scale-3 scores were significantly and positively correlated with the correct rate of the verbal working memory task(r=0.166)and the correct rate of the SWM task(r=0.210)(all P<0.05).There were significant differences in the correct rates of verbal and SWM tasks according to different exercise intensities(all P<0.05)and different exercise durations(all P<0.05),and no significant differences in the correct rates of verbal and SWM tasks by exercise frequency(all P>0.05).CONCLUSION An increase in physical exercise among college students,particularly medium-and high-intensity exercise and exercise of 30 min or more,can improve the correct rate of completing working memory tasks.
文摘This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,mind wandering(MW),in the course of reading.Sixty first-year university non-English majors participated in the study.A two-factor mixed experimental design of 2(text difficulty:difficult and simple)×2(WMC:high/large and low/small)was employed.Results revealed that 1)the main and interaction effects of WMC and text difficulty on voluntary MW were significant,whereas those on involuntary MW were not;2)while reading the easy texts,the involuntary MW of high-WMC individuals was less frequent than that of low-WMC ones,whereas while reading the difficult ones,the direct relationship between WMC and involuntary MW was not found;and that 3)high-WMC individuals had a lower overall rate of MW and better reading performance than low-WMC individuals did,but with increasing text difficulty,their rates of overall MW and voluntary MW were getting higher and higher,and the reading performance was getting lower and lower.These results lend support to WM theory and have pedagogical implications for the instruction of L2 reading.
基金This paper is part of the Youth Program of Science and Technology Research of Chongqing Municipal Education Commission(KJQN202300545)Youth Program of National Social Science Fund of China(21CJY001)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300567).
文摘The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018,this paper measured the development level of the digital economy in China from the perspectives of internet development and digital financial inclusion,and tested the mechanisms of how the digital economy affected rural residents’working hours.The results showed that the digital economy extended rural residents’working hours by expanding information channels and enhancing human capital,and this mechanism was affected by heterogeneity in rural residents’educational background,age,and social capital.Building on these findings,this paper holds that to increase rural residents’income by extending their working hours and achieving common prosperity for all,it is necessary to expand the opportunities for rural residents to participate in skills training and promote their accumulation of human capital.
文摘Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.
文摘BACKGROUND Lateral ankle sprains are the most common traumatic musculoskeletal injuries of the lower extremity,with an incidence rate of 15%-20%.The high incidence and prevalence highlights the economic impact of this injury.Ankle sprains lead to a high socioeconomic burden due to the combination of the high injury incidence and high medical expenses.Up to 40%of patients who suffer from an ankle sprain develop chronic ankle instability.Chronic instability can lead to prolonged periods of pain,immobility and injury recurrence.Identification of factors that influence return to work(RTW)and return to sports(RTS)after a lateral ankle sprain(LAS)may help seriously reduce healthcare costs.AIM To explore which factors may potentially affect RTW and RTS after sustaining an LAS.METHODS EMBASE and PubMed were systematically searched for relevant studies published until June 2023.Inclusion criteria were as follows:(1)Injury including LAS or chronic ankle instability;(2)Described any form of treatment;(3)Assessment of RTW or RTS;(4)Studies published in English;and(5)Study designs including randomized controlled clinical trials,clinical trials or cohort studies.Exclusion criteria were:(1)Studies involving children(age<16 year);or(2)Patients with concomitant ankle injury besides lateral ankle ligament damage.A quality assessment was performed for each of the included studies using established risk of bias tools.Additionally quality of evidence was assessed using the GRADEpro tool in cases where outcomes were included in the quantitative analysis.A best evidence synthesis was performed in cases of qualitative outcome analysis.For all studied outcomes suitable for quantitative analysis a forest plot was created to calculate the effect on RTW and RTS.RESULTS A total of 8904 patients were included in 21 studies,10 randomized controlled trials,7 retrospective cohort studies and 4 prospective cohort studies.Fifteen studies were eligible for meta-analysis.The overall RTS rate ranged were 80%and 83%in the all treatments pool and surgical treatments pool,respectively.The pooled mean days to RTS ranged from 23-93 d.The overall RTW rate was 89%.The pooled mean time to RTW ranged from 5.8-8.1 d.For patients with chronic ankle instability,higher preoperative motivation was the sole factor significantly and independently(P=0.001)associated with the rate of and time to RTS following ligament repair or reconstruction.Higher body mass index was identified as a significant factor(P=0.04)linked to not resuming sports or returning at a lower level(median 24,range 20-37),compared to those who resumed at the same or higher level(median 23,range 17-38).Patients with a history of psychological illness or brain injury,experienced a delay in their rehabilitation process for sprains with fractures and unspecified sprains.The extent of the delayed rehabilitation was directly proportional to the increased likelihood of experiencing a recurrence of the ankle sprain and the number of ankle-related medical visits.We also observed that 10%of athletes who did return to sport after lateral ankle sprain without fractures described non-ankle-related reasons for not returning.CONCLUSION All treatments yielded comparable results,with each treatment potentially offering unique advantages or benefits.Preoperative motivation may influence rehabilitation after LAS.Grading which factor had a greater impact was not possible due to the lack of comparability among the included patients.