Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Acute variceal bleeding in patients with liver cirrhosis and portal hypertension(PHT) is the most serious emergency complication among those patients and could have catastrophic outcomes if not timely managed. Early s...Acute variceal bleeding in patients with liver cirrhosis and portal hypertension(PHT) is the most serious emergency complication among those patients and could have catastrophic outcomes if not timely managed. Early screening by esophago-gastro-duodenoscopy(EGD) for the presence of esophageal varices(EVs) is currently recommended by the practice guidelines for all cirrhotic patients. Meanwhile, EGD is not readily accepted or preferred by many patients. The literature is rich in studies to investigate and validate non-invasive markers of EVs prediction aiming at reducing the unneeded endoscopic procedures. Gallbladder(GB) wall thickness(GBWT) measurement has been found promising in many published research articles. We aim to highlight the validity of sonographic GBWT measurement in the prediction of EVs based on the available evidence. We searched databases including Cochrane library, Pub Med, Web of Science and many others for relevant articles. GBWT is associated with the presence of EVs in cirrhotic patients with PHT of different etiologies. The cut-off of GBWT that can predict the presence of EVs varied in the literature and ranges from 3.1 mm to 4.35 mm with variable sensitivities of 46%-90.9% and lower cutoffs in viral cirrhosis compared to non-viral, however GBWT > 4 mm in many studies is associated with acceptable sensitivity up to 90%. Furthermore, a relation was also noticed with the degree of varices and portal hypertensive gastropathy.Among cirrhotics, GBWT > 3.5 mm predicts the presence of advanced(grade Ⅲ-Ⅳ) EVs with a sensitivity of 45%, the sensitivity increased to 92% when a cut-off ≥ 3.95 mm was used in another cohort. Analysis of these results should carefully be revised in the context of ascites, hypoalbuminemia and other intrinsic GB diseases among cirrhotic patients. The sensitivity for prediction of EVs improved upon combining GBWT measurement with other non-invasive predictors, e.g., platelets/GBWT.展开更多
The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing...During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.展开更多
Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform'...Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform's thickness, percentage of thickness reduction, mandrel rotational speed, feed rate, solution treatment time and aging treatment time on the wall thickness changes and process time in thermo-mechanical tube spinning process for fabrication of 2024 aluminum spun tubes using design of experiments (DOE), are studied. The statistical results are verified through some experiments. Results of experimental evaluation are analyzed by variance analysis and mathematic models are obtained. Finally using these models, input parameters for optimum production are achieved.展开更多
Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronol...Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months.展开更多
Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner r...Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.展开更多
In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material const...In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.展开更多
This article extends on the use of transabdominal intestinal ultrasound in diagnosing pediatric inflammatory bowel disease.Some of the more essential features used in assessing bowel inflammation,such as hyperemia and...This article extends on the use of transabdominal intestinal ultrasound in diagnosing pediatric inflammatory bowel disease.Some of the more essential features used in assessing bowel inflammation,such as hyperemia and wall thickness on ultrasound,are expanded upon from the publication on imaging and endoscopic tools in pediatric inflammatory bowel disease.展开更多
Small Angle X-ray Scattering (SAXS) experiment using Synchrotron Radiation as X-ray source was used to determine the average wall thickness of mesoporous silica prepared by condensation of tetraethylorthosilicate (TEO...Small Angle X-ray Scattering (SAXS) experiment using Synchrotron Radiation as X-ray source was used to determine the average wall thickness of mesoporous silica prepared by condensation of tetraethylorthosilicate (TEOS) using non-ionic alkylpolyethyleneoxide (AEO(9)) surfactant as templates. The results agreed with that of high-resolution TEM (HRTEM) measurement.展开更多
Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of str...Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of strips have been characterised.Also the welding conditions have been simulated.The favourable microstructure is achieved by the proper selection of an appropriate chemical composition of low carbon content and increased niobium micro alloying in combination with suitable strictly controlled hot-rolling parameters.The addition of niobium in combination with the adjustment of other alloying elements increases the recrystallisation stop temperature and thus makes it possible to apply a high temperature processing(HTP) concept.The homogeneous bainitic microstructure across the strip gauge is then formed during accelerated cooling on the run-out table of the hot-rolling mill.All results indicated excellent properties of these hot strips which make it suitable for spiral pipes of grade X80 for example 18.9mm×Φ1 220 mm at dimension.展开更多
Theoretical analyses show that the variation of wall thickness is in direct proportion to outer-diameter, inter-diameter, and (1+R_s)^(1/2) (Rs is sectional increase ratio of tube), the theoretical calculated results ...Theoretical analyses show that the variation of wall thickness is in direct proportion to outer-diameter, inter-diameter, and (1+R_s)^(1/2) (Rs is sectional increase ratio of tube), the theoretical calculated results of wall thickness during tube dieless upsetting are very approximate to the experimental one. As the width of deformation field increases, both the variation of wall thickness and the derivative of wall thickness variation to width of deformation field (to/tf) reduce.展开更多
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions ca...Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.展开更多
We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform ax...We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd...Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.展开更多
The small angle X-ray scattering of organically modified MSU-X silica prepared by co-condensation of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) show negative deviation from Debye’s theory due to the ...The small angle X-ray scattering of organically modified MSU-X silica prepared by co-condensation of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) show negative deviation from Debye’s theory due to the existence of the organic interface layer. By exerting correction of the scattering negative deviation, Debye relation may be recovered, and the average wall thickness of the material may be evaluated.展开更多
The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element si...The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element simulation was developed to study the residual stress in narrow gap multipass welding of pipes with a wall thickness of 150 mm and 89 weld beads. The effect of PWHT on welding residual stress was also investigated by means of numerical analysis. The simulated results show that the hoop stress is tensile stress in the weld region and compressive stress in the parent metal areas adjacent to weld seam. After heat treatment, the residual stresses decrease substantially, and the simulated residual stress is validated by the experimental one. The distribution of the through-wall axial residual stress along the weld center line is a self-equilibrating type.展开更多
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘Acute variceal bleeding in patients with liver cirrhosis and portal hypertension(PHT) is the most serious emergency complication among those patients and could have catastrophic outcomes if not timely managed. Early screening by esophago-gastro-duodenoscopy(EGD) for the presence of esophageal varices(EVs) is currently recommended by the practice guidelines for all cirrhotic patients. Meanwhile, EGD is not readily accepted or preferred by many patients. The literature is rich in studies to investigate and validate non-invasive markers of EVs prediction aiming at reducing the unneeded endoscopic procedures. Gallbladder(GB) wall thickness(GBWT) measurement has been found promising in many published research articles. We aim to highlight the validity of sonographic GBWT measurement in the prediction of EVs based on the available evidence. We searched databases including Cochrane library, Pub Med, Web of Science and many others for relevant articles. GBWT is associated with the presence of EVs in cirrhotic patients with PHT of different etiologies. The cut-off of GBWT that can predict the presence of EVs varied in the literature and ranges from 3.1 mm to 4.35 mm with variable sensitivities of 46%-90.9% and lower cutoffs in viral cirrhosis compared to non-viral, however GBWT > 4 mm in many studies is associated with acceptable sensitivity up to 90%. Furthermore, a relation was also noticed with the degree of varices and portal hypertensive gastropathy.Among cirrhotics, GBWT > 3.5 mm predicts the presence of advanced(grade Ⅲ-Ⅳ) EVs with a sensitivity of 45%, the sensitivity increased to 92% when a cut-off ≥ 3.95 mm was used in another cohort. Analysis of these results should carefully be revised in the context of ascites, hypoalbuminemia and other intrinsic GB diseases among cirrhotic patients. The sensitivity for prediction of EVs improved upon combining GBWT measurement with other non-invasive predictors, e.g., platelets/GBWT.
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
文摘During the process of laying long-distance oil and gas transmission pipelines, the hot-induction-bend method is extensively used when the direction has to be changed. By considering the pipeline' s ongoing processing and loading states during service, the pipeline that is generally used exhibits thicker walls than those that are observed in the line pipe. As such, during pipeline construction, hot-induction-bend and line pipes with different wall thickness are girth-welded. The chemical composition of hot-induction-bend and line pipes differs, with the carbon content being particularly higher in the hot-induction-bend pipe;it also depicts a higher carbon equivalent, which makes it possible to modify the girth of the pipe. In this study, using Baosteel' s standard X70M UOE hot- induction-bend and line pipes, solid-wire automatic gas-metal-arc girth welding was performed and the performance of the girth-welded joint was evaluated. Furthermore,the weldability of the pipeline girth and the microstructure of the girth-welded joint were analyzed. The results reveal that Baosteel' s standard UOE hot-induction-bend and line pipes exhibit good girth weldability, and their technical quality can be guaranteed in case of consumer field- construction applications.
文摘Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform's thickness, percentage of thickness reduction, mandrel rotational speed, feed rate, solution treatment time and aging treatment time on the wall thickness changes and process time in thermo-mechanical tube spinning process for fabrication of 2024 aluminum spun tubes using design of experiments (DOE), are studied. The statistical results are verified through some experiments. Results of experimental evaluation are analyzed by variance analysis and mathematic models are obtained. Finally using these models, input parameters for optimum production are achieved.
基金supported by the Russian Science Foundation grant no. 23-44-00067the National Natural Science Foundation of China grant no.42261134537 in the framework of a joint Russian-Chinese project (fieldwork)by the Russian Ministry of Science and Higher Education,grant number FSRZ-2023-0007 (for data analysis)
文摘Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months.
基金Ministry of Science, Industry, and Technology which supported the project under the Industrial Thesis Support Program
文摘Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.
基金supported by the National Natural Science Foundation of China(No.11772041)
文摘In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.
文摘This article extends on the use of transabdominal intestinal ultrasound in diagnosing pediatric inflammatory bowel disease.Some of the more essential features used in assessing bowel inflammation,such as hyperemia and wall thickness on ultrasound,are expanded upon from the publication on imaging and endoscopic tools in pediatric inflammatory bowel disease.
文摘Small Angle X-ray Scattering (SAXS) experiment using Synchrotron Radiation as X-ray source was used to determine the average wall thickness of mesoporous silica prepared by condensation of tetraethylorthosilicate (TEOS) using non-ionic alkylpolyethyleneoxide (AEO(9)) surfactant as templates. The results agreed with that of high-resolution TEM (HRTEM) measurement.
文摘Hot-rolled wide strip for production of large diameter,heavy gauged(up to 19 mm) helical line pipe grade X80 was a priority development over the last three years.Microstructure,texture and mechanical properties of strips have been characterised.Also the welding conditions have been simulated.The favourable microstructure is achieved by the proper selection of an appropriate chemical composition of low carbon content and increased niobium micro alloying in combination with suitable strictly controlled hot-rolling parameters.The addition of niobium in combination with the adjustment of other alloying elements increases the recrystallisation stop temperature and thus makes it possible to apply a high temperature processing(HTP) concept.The homogeneous bainitic microstructure across the strip gauge is then formed during accelerated cooling on the run-out table of the hot-rolling mill.All results indicated excellent properties of these hot strips which make it suitable for spiral pipes of grade X80 for example 18.9mm×Φ1 220 mm at dimension.
基金Sponsored by Ministry of Education of China and Natural Science Foundation of Liaoning Province
文摘Theoretical analyses show that the variation of wall thickness is in direct proportion to outer-diameter, inter-diameter, and (1+R_s)^(1/2) (Rs is sectional increase ratio of tube), the theoretical calculated results of wall thickness during tube dieless upsetting are very approximate to the experimental one. As the width of deformation field increases, both the variation of wall thickness and the derivative of wall thickness variation to width of deformation field (to/tf) reduce.
基金supported by the Ph. D. Programs Foundation of Ministry of Education of China(No. 20050403002)
文摘Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.
基金Lyudmila Petrova for invaluable metrological support. A.I.D. also thanks RFBR grant no. 15-08-01511a
文摘We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金Natural Science Foundation of China(Grant No.81960332)Guangxi Provincial Innovation driven Development Project(Grant No.GKAA17204062)+1 种基金Guangxi Provincial Natural Science Foundation(Grant No.2016GXNSFAA380211)Liuzhou Municipal Scientific Research and Technology Development Plan(Grant No.2016C050203)。
文摘Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.
文摘The small angle X-ray scattering of organically modified MSU-X silica prepared by co-condensation of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) show negative deviation from Debye’s theory due to the existence of the organic interface layer. By exerting correction of the scattering negative deviation, Debye relation may be recovered, and the average wall thickness of the material may be evaluated.
基金The authors acknowledge the financial support of the National Science and Technology Support Program of China (2009BAF44 BO0) and Research Fund for the Doctoral Program of Higher Education of China (20100201110065) and National Natural Science Foundation of China ( 51375370 ).
文摘The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element simulation was developed to study the residual stress in narrow gap multipass welding of pipes with a wall thickness of 150 mm and 89 weld beads. The effect of PWHT on welding residual stress was also investigated by means of numerical analysis. The simulated results show that the hoop stress is tensile stress in the weld region and compressive stress in the parent metal areas adjacent to weld seam. After heat treatment, the residual stresses decrease substantially, and the simulated residual stress is validated by the experimental one. The distribution of the through-wall axial residual stress along the weld center line is a self-equilibrating type.