Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air...To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.展开更多
Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im...The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.展开更多
In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 1...In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 12 Company CW’s manufacturing workshops from 2016 to 2022 was assessed.The findings indicated that aside from a few workshops operating at the production frontier,the rest exhibit significant fluctuations in energy efficiency and generally low energy efficiency.Subsequently,a combined GRA-Tobit analysis model was introduced to identify factors influencing the energy efficiency of Company CW’s manufacturing workshops.Regression analysis revealed that technological investments,employee quality,workshop production scale,investment in clean energy,and the level of pollution control all significantly impact the energy efficiency of Company CW’s manufacturing workshops.By evaluating the energy efficiency of Company CW’s manufacturing workshops and studying their influencing factors,this research aids company managers in understanding the energy efficiency of the manufacturing process.It optimizes the combination of various production elements,thereby offering effective guidance for improving the energy efficiency issues of the company’s manufacturing workshops,which can contribute to enhancing the corporation’s overall energy efficiency.展开更多
To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empiri...To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empirical studies of the gene ontology with various perspectives, this paper shows that the whole gene ontology displays the same topological features as complex networks including "small world" and "scale-free",while some sub-ontologies have the "scale-free" property but no "small world" effect.The potential important terms in an ontology are discovered by some famous complex network centralization methods.An evaluation method based on information retrieval in MEDLINE is designed to measure the effectiveness of the discovered important terms.According to the relevant literature of the gene ontology terms,the suitability of these centralization methods for ontology important concepts discovering is quantitatively evaluated.The experimental results indicate that the betweenness centrality is the most appropriate method among all the evaluated centralization measures.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Stubble-breaking device is a key working part of no-tillage seeder in stub land,and directly affects planting quality of seeder.Based on the current domestic used stubble-breaking device,a new kind of stubble-breaking...Stubble-breaking device is a key working part of no-tillage seeder in stub land,and directly affects planting quality of seeder.Based on the current domestic used stubble-breaking device,a new kind of stubble-breaking ditching colter was designed.To study its strength property and reduce trouble in work,the three-dimensional model of stubble-breaking ditching colter was established based on SolidWorks.By using Cosmos,it was carried out the finite element analysis.The distortion and stress of stubble-breaking ditching colter in work were obtained,and the weak link of strength was found.The result showed that the maximum stress of stubble-breaking ditching colter was 5.862×108 N/m2,and the maximum twisted displacement was 2.648 mm.The stubble-breaking ditching colter was carried out improved design.Based on Cosmos,the static analysis was carried out.It showed that the strength and rigidity of improved stubble-breaking ditching colter were obviously improved.The research provided reference basis for optimal design of the stubble-breaking ditching colter.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de...Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.展开更多
Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial ...Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.展开更多
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof...This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.展开更多
Objective:Network analysis was used to explore the complex inter-relationships between social participation activities and depressive symptoms among the Chinese older population,and the differences in network structur...Objective:Network analysis was used to explore the complex inter-relationships between social participation activities and depressive symptoms among the Chinese older population,and the differences in network structures among different genders,age groups,and urban-rural residency would be compared.Methods:Based on the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey(CLHLS),12,043 people aged 65 to 105 were included.The 10-item Center for Epidemiologic Studies Depression(CESD)Scale was used to assess depressive symptoms and 10 types of social participation activities were collected,including housework,tai-chi,square dancing,visiting and interacting with friends,garden work,reading newspapers or books,raising domestic animals,playing cards or mahjong,watching TV or listening to radio,and organized social activities.R 4.2.1 software was used to estimate the network model and calculate strength and bridge strength.Results:21.60%(2,601/12,043)of the participants had depressive symptoms.The total social participation score was negatively associated with depressive symptoms after adjusting for sociodemographic factors.The network of social participation and depressive symptoms showed that“D9(Inability to get going)”and“S9(Watching TV and/or listening to the radio)”had the highest strength within depressive symptoms and social participation communities,respectively,and“S1(Housework)”,“S9(Watching TV and/or listening to the radio)”,and“D5(Hopelessness)”were the most prominent bridging nodes between the two communities.Most edges linking the two communities were negative.“S5(Graden work)-D5(Hopelessness)”and“S6(Reading newspapers/books)-D4(Everything was an effort)”were the top 2 strongest negative edges.Older females had significantly denser network structures than older males.Compared to older people aged 65e80,the age group 81e105 showed higher network global strength.Conclusions:This study provides novel insights into the complex relationships between social participation and depressive symptoms.Except for doing housework,other social participation activities were found to be protective for depression levels.Different nursing strategies should be taken to prevent and alleviate depressive symptoms for different genders and older people of different ages.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndro...Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndromes.However,the selection and compatibility of herbs are complex and abstract due to intrinsic relationships between herbal properties and their overall functions.Network analysis is applied to demonstrate the complex relationships between individual herbal efficacy and the overall function of CM prescriptions.To illustrate their connections and correlations,prescription function(PF),prescription herb(PH),and herbal efficacy(HE)intranetworks are proposed based on CM theory to identify relationships between herbs and prescriptions.These three networks are then connected by PF-PH and PH-HE interlayer networks adopting herb dosage to form a multidimensional heterogeneous network,a Prescription-Herb-Function Network(PHFN).The network is applied to 112 classic prescriptions from Treatise on Exogenous Febrile and Miscellaneous Diseases to illustrate the application of PHFN.The PHFN is constructed including 146 functions in PF intra network,89 herbs in the PH intra network,and 163 herbal efficacies in the HE intra network.The results show that herb pairs with synergistic actions have stronger relevance,such as licorice-cassia twig,licorice-Chinese date,fresh ginger-Chinese date,etc.The integration of dosage to the network helps to indicate the main herbs for cluster analysis and automatic formulation.PHFN also reveals the internal relationships between the functions of prescriptions and composed herbal efficacies.展开更多
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ...With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.展开更多
Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control par...Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production.展开更多
Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fis...Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.展开更多
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
文摘To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.
文摘The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
文摘In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 12 Company CW’s manufacturing workshops from 2016 to 2022 was assessed.The findings indicated that aside from a few workshops operating at the production frontier,the rest exhibit significant fluctuations in energy efficiency and generally low energy efficiency.Subsequently,a combined GRA-Tobit analysis model was introduced to identify factors influencing the energy efficiency of Company CW’s manufacturing workshops.Regression analysis revealed that technological investments,employee quality,workshop production scale,investment in clean energy,and the level of pollution control all significantly impact the energy efficiency of Company CW’s manufacturing workshops.By evaluating the energy efficiency of Company CW’s manufacturing workshops and studying their influencing factors,this research aids company managers in understanding the energy efficiency of the manufacturing process.It optimizes the combination of various production elements,thereby offering effective guidance for improving the energy efficiency issues of the company’s manufacturing workshops,which can contribute to enhancing the corporation’s overall energy efficiency.
基金The National Basic Research Program of China (973Program) (No.2005CB321802)Program for New Century Excellent Talents in University (No.NCET-06-0926)the National Natural Science Foundation of China (No.60873097,90612009)
文摘To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empirical studies of the gene ontology with various perspectives, this paper shows that the whole gene ontology displays the same topological features as complex networks including "small world" and "scale-free",while some sub-ontologies have the "scale-free" property but no "small world" effect.The potential important terms in an ontology are discovered by some famous complex network centralization methods.An evaluation method based on information retrieval in MEDLINE is designed to measure the effectiveness of the discovered important terms.According to the relevant literature of the gene ontology terms,the suitability of these centralization methods for ontology important concepts discovering is quantitatively evaluated.The experimental results indicate that the betweenness centrality is the most appropriate method among all the evaluated centralization measures.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金Supported by National Science and Technology Support Plan of China(2011BAF07B01)~~
文摘Stubble-breaking device is a key working part of no-tillage seeder in stub land,and directly affects planting quality of seeder.Based on the current domestic used stubble-breaking device,a new kind of stubble-breaking ditching colter was designed.To study its strength property and reduce trouble in work,the three-dimensional model of stubble-breaking ditching colter was established based on SolidWorks.By using Cosmos,it was carried out the finite element analysis.The distortion and stress of stubble-breaking ditching colter in work were obtained,and the weak link of strength was found.The result showed that the maximum stress of stubble-breaking ditching colter was 5.862×108 N/m2,and the maximum twisted displacement was 2.648 mm.The stubble-breaking ditching colter was carried out improved design.Based on Cosmos,the static analysis was carried out.It showed that the strength and rigidity of improved stubble-breaking ditching colter were obviously improved.The research provided reference basis for optimal design of the stubble-breaking ditching colter.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金supported by the Hunan Provincial Natrual Science Foundation of China(2022JJ30103)“the 14th Five-Year”Key Disciplines and Application Oriented Special Disciplines of Hunan Province(Xiangjiaotong[2022],351)the Science and Technology Innovation Program of Hunan Province(2016TP1020).
文摘Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.
基金Shenzhen Science and Technology Program,Grant/Award Number:ZDSYS20211021111415025Shenzhen Institute of Artificial Intelligence and Robotics for SocietyYouth Science and Technology Talents Development Project of Guizhou Education Department,Grant/Award Number:QianJiaoheKYZi[2018]459。
文摘Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.
基金This work is the result of commissioned research project supported by the Affiliated Institute of ETRI(2022-086)received by Junho AhnThis research was supported by the National Research Foundation of Korea(NRF)Basic Science Research Program funded by the Ministry of Education(No.2020R1A6A1A03040583)this work was supported by Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0008691,HRD Program for Industrial Innovation).
文摘This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.
基金supported by the National Key Research and Development Plan Project(grant number:2022YFC3600904)The funding organization had no role in the survey’s design,implementation,and analysis.
文摘Objective:Network analysis was used to explore the complex inter-relationships between social participation activities and depressive symptoms among the Chinese older population,and the differences in network structures among different genders,age groups,and urban-rural residency would be compared.Methods:Based on the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey(CLHLS),12,043 people aged 65 to 105 were included.The 10-item Center for Epidemiologic Studies Depression(CESD)Scale was used to assess depressive symptoms and 10 types of social participation activities were collected,including housework,tai-chi,square dancing,visiting and interacting with friends,garden work,reading newspapers or books,raising domestic animals,playing cards or mahjong,watching TV or listening to radio,and organized social activities.R 4.2.1 software was used to estimate the network model and calculate strength and bridge strength.Results:21.60%(2,601/12,043)of the participants had depressive symptoms.The total social participation score was negatively associated with depressive symptoms after adjusting for sociodemographic factors.The network of social participation and depressive symptoms showed that“D9(Inability to get going)”and“S9(Watching TV and/or listening to the radio)”had the highest strength within depressive symptoms and social participation communities,respectively,and“S1(Housework)”,“S9(Watching TV and/or listening to the radio)”,and“D5(Hopelessness)”were the most prominent bridging nodes between the two communities.Most edges linking the two communities were negative.“S5(Graden work)-D5(Hopelessness)”and“S6(Reading newspapers/books)-D4(Everything was an effort)”were the top 2 strongest negative edges.Older females had significantly denser network structures than older males.Compared to older people aged 65e80,the age group 81e105 showed higher network global strength.Conclusions:This study provides novel insights into the complex relationships between social participation and depressive symptoms.Except for doing housework,other social participation activities were found to be protective for depression levels.Different nursing strategies should be taken to prevent and alleviate depressive symptoms for different genders and older people of different ages.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
文摘Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndromes.However,the selection and compatibility of herbs are complex and abstract due to intrinsic relationships between herbal properties and their overall functions.Network analysis is applied to demonstrate the complex relationships between individual herbal efficacy and the overall function of CM prescriptions.To illustrate their connections and correlations,prescription function(PF),prescription herb(PH),and herbal efficacy(HE)intranetworks are proposed based on CM theory to identify relationships between herbs and prescriptions.These three networks are then connected by PF-PH and PH-HE interlayer networks adopting herb dosage to form a multidimensional heterogeneous network,a Prescription-Herb-Function Network(PHFN).The network is applied to 112 classic prescriptions from Treatise on Exogenous Febrile and Miscellaneous Diseases to illustrate the application of PHFN.The PHFN is constructed including 146 functions in PF intra network,89 herbs in the PH intra network,and 163 herbal efficacies in the HE intra network.The results show that herb pairs with synergistic actions have stronger relevance,such as licorice-cassia twig,licorice-Chinese date,fresh ginger-Chinese date,etc.The integration of dosage to the network helps to indicate the main herbs for cluster analysis and automatic formulation.PHFN also reveals the internal relationships between the functions of prescriptions and composed herbal efficacies.
基金supported in part by the Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2022C01083 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/)Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2023C01217 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/).
文摘With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.
基金supported by the National Natural Science Foundation of China (62373224,62333013,U23A20327)。
文摘Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production.
文摘Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.