A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth ...A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.展开更多
The characteristics of novel cone-generated cylindrical worm and the machining princi- ple of using a grinding wheel with two degree-of-freedom motions are described. A systematic study is made on the first enveloping...The characteristics of novel cone-generated cylindrical worm and the machining princi- ple of using a grinding wheel with two degree-of-freedom motions are described. A systematic study is made on the first enveloping process of the grinding wheel forming a worm and the second enveloping process of the worm forming a worm wheel with the meshing theory of kinematic method. Some numerical calculation formulas and important conclusions are obtained.展开更多
A novel specific type of worm drive, so-called end face engagement worm gear(EFEWD), is originally presented to minimize or overcome the gear backlash. Different factors, including the three different types, contact...A novel specific type of worm drive, so-called end face engagement worm gear(EFEWD), is originally presented to minimize or overcome the gear backlash. Different factors, including the three different types, contact curves, tooth profile, lubrication angle and the induced normal curvature are taken into account to investigate the meshing characteristics and create the profile of a novel specific type of worm drive through mathematical models and theoretical analysis. The tooth of the worm wheel is very specific with the sine-shaped tooth which is located at the alveolus of the worm and the tooth profile of a worm is generated by the meshing movement of the worm wheel with the sine-shaped tooth, but just the end face of the worm(with three different typical meshing types) is adapted to meshing, and therefore an extraordinary manufacturing methods is used to generate the profile of the end face engagement worm. The research results indicates that the bearing contacts of the generated conjugate hourglass worm gear set are in line contacts, with certain advantages of no-backlash, high precision and high operating efficiency over other gears and gear systems besides the end face engagement worm gear drive may improve bearing contact, reduce the level of transmission errors and lessen the sensitivity to errors of alignment. Also, the end face engagement worm can be easily made with superior meshing and lubrication performance compared with the conventional techniques. In particular, the meshing and lubrication performance of the end face engagement worm gear by using the end face to meshing can be increased over 10% and 7%, respectively. This investigate is expect to provide a new insight on the design of the future no-backlash worm drive for industry.展开更多
This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function...This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum s...This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.展开更多
This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. ...This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and three helical gear units and their regular resistance condition were analysed. From the results of the study, effective formulas for determination of the partial ratios of the V-belt and three-step helical gearboxes were introduced. As using explicit models, the partial ratios can be determined accurately and simply.展开更多
为解决传统渐开线蜗杆斜齿轮副在开式传动或传动比过大时斜齿轮容易发生齿根断裂的情况,提出一种新型的基于不等模数不等压力角设计的渐开线蜗杆副,使斜齿轮的模数与压力角同时提高,大幅提高斜齿轮的齿根强度。通过对此种蜗杆副的传动...为解决传统渐开线蜗杆斜齿轮副在开式传动或传动比过大时斜齿轮容易发生齿根断裂的情况,提出一种新型的基于不等模数不等压力角设计的渐开线蜗杆副,使斜齿轮的模数与压力角同时提高,大幅提高斜齿轮的齿根强度。通过对此种蜗杆副的传动特性的分析,得到特殊的啮合角与中心距计算方式。另外,通过对同传动比、同蜗杆情况下基于不等模数设计的ZI蜗杆斜齿轮副和传统ZI蜗杆斜齿轮副的建模与有限元分析,得出在较大模数比情况下的斜齿轮齿根强度约为传统斜齿轮齿根强度的2.956倍,增大了渐开线蜗杆的应用范围。后续使用灰色预测,对比出误差平方和(Sum of Squared Errors,SSE)最小模型,予以验证预测的准确性,另外进行蜗杆施加不同转矩下的斜齿轮啮合齿受拉力处最大应力σ_(1max)的数据预测,为相应的工程分析与必要的校核设计给出了依据。展开更多
基金This project is supported by National Natural Science Foundation of China (No.E50575234).
文摘A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.
文摘The characteristics of novel cone-generated cylindrical worm and the machining princi- ple of using a grinding wheel with two degree-of-freedom motions are described. A systematic study is made on the first enveloping process of the grinding wheel forming a worm and the second enveloping process of the worm forming a worm wheel with the meshing theory of kinematic method. Some numerical calculation formulas and important conclusions are obtained.
基金Supported by National Natural Science Foundation of China(Grant No.51305356)Spring Sunshine Plan of Ministry of Education of China(Grant No.14202505)Talent Introduction of Xihua University,China(Grant No.Z1220217)
文摘A novel specific type of worm drive, so-called end face engagement worm gear(EFEWD), is originally presented to minimize or overcome the gear backlash. Different factors, including the three different types, contact curves, tooth profile, lubrication angle and the induced normal curvature are taken into account to investigate the meshing characteristics and create the profile of a novel specific type of worm drive through mathematical models and theoretical analysis. The tooth of the worm wheel is very specific with the sine-shaped tooth which is located at the alveolus of the worm and the tooth profile of a worm is generated by the meshing movement of the worm wheel with the sine-shaped tooth, but just the end face of the worm(with three different typical meshing types) is adapted to meshing, and therefore an extraordinary manufacturing methods is used to generate the profile of the end face engagement worm. The research results indicates that the bearing contacts of the generated conjugate hourglass worm gear set are in line contacts, with certain advantages of no-backlash, high precision and high operating efficiency over other gears and gear systems besides the end face engagement worm gear drive may improve bearing contact, reduce the level of transmission errors and lessen the sensitivity to errors of alignment. Also, the end face engagement worm can be easily made with superior meshing and lubrication performance compared with the conventional techniques. In particular, the meshing and lubrication performance of the end face engagement worm gear by using the end face to meshing can be increased over 10% and 7%, respectively. This investigate is expect to provide a new insight on the design of the future no-backlash worm drive for industry.
文摘This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
文摘This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.
文摘This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and three helical gear units and their regular resistance condition were analysed. From the results of the study, effective formulas for determination of the partial ratios of the V-belt and three-step helical gearboxes were introduced. As using explicit models, the partial ratios can be determined accurately and simply.
文摘为解决传统渐开线蜗杆斜齿轮副在开式传动或传动比过大时斜齿轮容易发生齿根断裂的情况,提出一种新型的基于不等模数不等压力角设计的渐开线蜗杆副,使斜齿轮的模数与压力角同时提高,大幅提高斜齿轮的齿根强度。通过对此种蜗杆副的传动特性的分析,得到特殊的啮合角与中心距计算方式。另外,通过对同传动比、同蜗杆情况下基于不等模数设计的ZI蜗杆斜齿轮副和传统ZI蜗杆斜齿轮副的建模与有限元分析,得出在较大模数比情况下的斜齿轮齿根强度约为传统斜齿轮齿根强度的2.956倍,增大了渐开线蜗杆的应用范围。后续使用灰色预测,对比出误差平方和(Sum of Squared Errors,SSE)最小模型,予以验证预测的准确性,另外进行蜗杆施加不同转矩下的斜齿轮啮合齿受拉力处最大应力σ_(1max)的数据预测,为相应的工程分析与必要的校核设计给出了依据。