期刊文献+
共找到4,463篇文章
< 1 2 224 >
每页显示 20 50 100
A Novel 3D Gait Model for Subject Identification Robust against Carrying and Dressing Variations
1
作者 Jian Luo Bo Xu +1 位作者 Tardi Tjahjadi Jian Yi 《Computers, Materials & Continua》 SCIE EI 2024年第7期235-261,共27页
Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3... Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes.This paper proposes a novel targeted 3-dimensional(3D)gait model(3DGait)represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model.The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing.The 3DGait recognitionmethod involves 2-dimensional(2D)to 3DGaitdata learningbasedon3Dvirtual samples,a semantic gait parameter estimation Long Short Time Memory(LSTM)network(3D-SGPE-LSTM),a feature fusion deep model based on a multi-set canonical correlation analysis,and SoftMax recognition network.First,a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit 3DGait onto the given 2D gait images.3Dinterpretable semantic parameters control the 3D morphing and dressing involved.Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with various shapes,poses and styles.Second,using the 2D gait images as input and the subjects’corresponding 3D semantic descriptors as output,an end-to-end 3D-SGPE-LSTM is constructed and trained.Third,body shape,pose and external gait factors(3D-eFactors)are estimated using the 3D-SGPE-LSTM model to create a set of interpretable gait descriptors to represent the 3DGait Model,i.e.,3D intrinsic semantic shape descriptor(3DShape);3D skeleton-based gait pose descriptor(3D-Pose)and 3D dressing with other 3D-eFators.Finally,the 3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the 3D-eFators.Practical research on CASIA B,CMU MoBo,TUM GAID and GPJATK databases shows that 3DGait is robust against object carrying and dressing variations,especially under multi-cross variations. 展开更多
关键词 gait recognition human identification three-dimensional gait canonical correlation analysis
下载PDF
Research on human gait sensing based on triboelectric nanogenerator
2
作者 Gang Yang Lifang Wang Jiayun Tian 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期32-40,共9页
To address the problem of frequent battery replacement for wearable sensors applied to fall detection among the elderly,a portable and lowcost triboelectric nanogenerator(TENG)-based self-powered sensor for human gait... To address the problem of frequent battery replacement for wearable sensors applied to fall detection among the elderly,a portable and lowcost triboelectric nanogenerator(TENG)-based self-powered sensor for human gait monitoring is proposed.The main fabrication materials of the TENG are polytetrafluoroethylene(PTFE)film,aluminum(Al)foil,and polyimide(PI)film,where PTFE and Al are the friction layer materials and the PI film is used to improve the output performance.Exploiting the ability of TENGs to monitor changes in environmental conditions,a self-powered sensor based on the TENG is placed in an insole to collect gait information.Since a TENG does not require a power source to convert physical and mechanical signals into electrical signals,the electrical signals can be used as sensing signals to be analyzed by a computer to recognize daily human activities and fall status.Experimental results show that the accuracy of the TENG-based sensor for recognizing human gait is 97.2%,demonstrating superior sensing performance and providing valuable insights for future monitoring of fall events in the elderly population. 展开更多
关键词 Triboelectric nanogenerator SENSOR gait monitoring
下载PDF
Smart Gait:A Gait Optimization Framework for Hexapod Robots
3
作者 Yunpeng Yin Feng Gao +2 位作者 Qiao Sun Yue Zhao Yuguang Xiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期146-159,共14页
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call... The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences. 展开更多
关键词 gait optimization Swing trajectory optimization Legged robot Hexapod robot
下载PDF
Human Gait Recognition for Biometrics Application Based on Deep Learning Fusion Assisted Framework
4
作者 Ch Avais Hanif Muhammad Ali Mughal +3 位作者 Muhammad Attique Khan Nouf Abdullah Almujally Taerang Kim Jae-Hyuk Cha 《Computers, Materials & Continua》 SCIE EI 2024年第1期357-374,共18页
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c... The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work. 展开更多
关键词 gait recognition covariant factors BIOMETRIC deep learning FUSION feature selection
下载PDF
Personalized Lower Limb Gait Reconstruction Modeling Based on RFA-ProMP
5
作者 Chunhong Zeng Kang Lu +1 位作者 Zhiqin He Qinmu Wu 《Computers, Materials & Continua》 SCIE EI 2024年第7期1441-1456,共16页
Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest... Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest algorithm to construct a gait parameter model,which maps the relationship between parameters such as height,weight,age,gender,and gait speed,achieving prediction of key points on the gait curve.To enhance prediction accuracy,an attention mechanism is introduced into the algorithm to focus more on the main features.Meanwhile,to ensure high similarity between the reconstructed gait curve and the normal one,probabilistic motion primitives(ProMP)are used to learn the probability distribution of normal gait data and construct a gait trajectorymodel.Finally,using the specified step speed as input,select a reference gait trajectory from the learned trajectory,and reconstruct the curve of the reference trajectoryusing the gait keypoints predictedby the parametermodel toobtain the final curve.Simulation results demonstrate that the method proposed in this paper achieves 98%and 96%curve correlations when generating personalized lower limb gait curves for different patients,respectively,indicating its suitability for such tasks. 展开更多
关键词 Personalized lower limb gait prediction random forest probabilistic movement primitives
下载PDF
Gait Kinematic Analysis Facilitates Rapid Early Recovery Following Total Knee Arthroplasty
6
作者 Shiluan Liu Zhengyu Cao +4 位作者 Saijiao Lan Chongjing Zhang Lin Pan Wenjin Luo Jian Li 《Journal of Biosciences and Medicines》 2024年第10期328-338,共11页
Objective: To explore gait kinematics analysis and evaluate the surgical efficacy of total knee arthroplasty (TKA), as well as its guiding significance for postoperative rehabilitation. Method: Fifty patients admitted... Objective: To explore gait kinematics analysis and evaluate the surgical efficacy of total knee arthroplasty (TKA), as well as its guiding significance for postoperative rehabilitation. Method: Fifty patients admitted to TKA treatment for knee osteoarthritis from December 2022 to July 2023 were included, which were divided into an intervention group (gait kinematics analysis group, n = 25) and a control group (conventional rehabilitation program group, n = 25). All patients underwent HSS score and KSS score before surgery (T0), 1 month after surgery (T1), 3 months after surgery (T2), and 6 months after surgery (T3). The intervention group underwent gait kinematics analysis at 1 month after surgery (T1) and 3 months after surgery (T2). Two groups measured the hip knee ankle angle (HKA), distal femoral lateral angle (LDFA), and proximal tibial medial angle (MPTA) on knee joint radiographs before and after surgery. Results: There was no significant difference in general information, preoperative imaging parameters, and functional scores between the two groups of patients. There was no significant difference in functional scores and postoperative prosthesis alignment between the two groups of patients in the first month after surgery. The intervention group showed a significant decrease in gait kinematic scores in the first month, with hip joint scores being particularly prominent (P 0.05). Conclusion: Gait kinematic analysis is helpful in evaluating the postoperative efficacy of TKA and can guide early and rapid recovery after TKA. 展开更多
关键词 gait Kinematic Analysis Total Knee Arthroplasty
下载PDF
Trajectory of Walking Function in Late-Stage Older Individuals Managed with a Regular Exercise Program: A 5-Year Longitudinal Tracking with an IoT Gait Analysis System Using Accelerometers
7
作者 Taisuke Ito 《Open Journal of Therapy and Rehabilitation》 2024年第2期174-184,共11页
Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized fo... Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function. 展开更多
关键词 Late-Stage Elderly Exercise gait Function ACCELEROMETER IoT-Based gait Analysis Device
下载PDF
Multisensory mechanisms of gait and balance in Parkinson’s disease:an integrative review
8
作者 Stiven Roytman Rebecca Paalanen +4 位作者 Giulia Carli Uros Marusic Prabesh Kanel Teus van Laar Nico I.Bohnen 《Neural Regeneration Research》 SCIE CAS 2025年第1期82-92,共11页
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ... Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases. 展开更多
关键词 aging BALANCE encephalography functional magnetic resonance imaging gait multisensory integration Parkinson’s disease positron emission tomography SOMATOSENSORY VESTIBULAR visual
下载PDF
Using Linear and Non-Linear Techniques to Characterize Gait Coordination Patterns of Two Individuals with NGLY1 Deficiency
9
作者 Charles S. Layne Dacia Martinez Diaz +4 位作者 Christopher A. Malaya Brock Futrell Christian Alfaro Hannah E. Gustafson Bernhard Suter 《Case Reports in Clinical Medicine》 2024年第9期391-409,共19页
Individuals with NGLY1 Deficiency, an inherited autosomal recessive disorder, exhibit hyperkinetic movements including athetoid, myoclonic, dysmetric, and dystonic movements impacting both upper and lower limb motion.... Individuals with NGLY1 Deficiency, an inherited autosomal recessive disorder, exhibit hyperkinetic movements including athetoid, myoclonic, dysmetric, and dystonic movements impacting both upper and lower limb motion. This report provides the first set of laboratory-based measures characterizing the gait patterns of two individuals with NGLY1 Deficiency, using both linear and non-linear measures, during treadmill walking, and compares them to neurotypical controls. Lower limb kinematics were obtained with a camera-based motion analysis system and bilateral time normalized lower limb joint time series waveforms were developed. Linear measures of joint range of motion, stride times and peak angular velocity were obtained, and confidence intervals were used to determine if there were differences between the patients and control. Correlations between participant and control mean joint waveforms were calculated and used to evaluate the similarities between patients and controls. Non-linear measures included: joint angle-angle diagrams, phase-portrait areas, and continuous relative phase (CRP) measures. These measures were used to assess joint coordination and control features of the lower limb motion. Participants displayed high correlations with their control counterparts for the hip and knee joint waveforms, but joint motion was restricted. Peak angular velocities were also significantly less than those of the controls. Both angle-angle and phase-portrait areas were less than the controls although the general shapes of those diagrams were similar to those of the controls. The NGLY1 Deficient participants’ CRP measures displayed disrupted coordination patterns with the knee-ankle patterns displaying more disruption than the hip-knee measures. Overall, the participants displayed a functional walking pattern that differed in many quantitative ways from those of the neurotypical controls. Using both linear and non-linear measures to characterize gait provides a more comprehensive and nuanced characterization of NGLY1 gait and can be used to develop interventions targeted toward specific aspects of disordered gait. 展开更多
关键词 NGLY1 gait DISABILITY KINEMATICS Angle-Angle Diagrams Phase Portraits
下载PDF
The Immediate Analgesic Effect and Impact on Gait Function of Transcutaneous Electrical Nerve Stimulation in Late-Stage Elderly Individuals with Knee Pain: Examination of Gait Function Using an IoT-Based Gait Analysis Device
10
作者 Taisuke Ito 《Open Journal of Therapy and Rehabilitation》 2024年第2期185-195,共11页
Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. M... Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group. 展开更多
关键词 Late-Stage Elderly Knee Joint Pain Exercise Transcutaneous Electrical Stimulation IoT-Based gait Analysis Device
下载PDF
融合轮廓增强和注意力机制的改进GaitSet步态识别方法
11
作者 陈万志 唐浩博 王天元 《电子测量与仪器学报》 CSCD 北大核心 2024年第1期203-210,共8页
针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将... 针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将其作为神经网络模型的输入特征,增强了人体外观的表示。其次在提取特征的过程中引入注意力机制,增强模型的特征提取能力,从而提高步态识别的精度。最后在CASIA-B和OU-MVLP数据集上进行实验,所提方法的平均Rank-1准确率分别为87.7%和88.1%。特别是在最复杂的穿大衣行走条件下,相较于GaitSetv2算法,准确率提升了6.7%,表明所提出方法具有更强的准确性。此外,所提方法几乎没有增加额外的参数量、计算复杂度和推理时间,说明其各模块的快速性。 展开更多
关键词 步态识别 交叉视角 深度学习 轮廓增强 注意力机制
下载PDF
Analyzing the Combination Effects of Repetitive Transcranial Magnetic Stimulation and Motor Control Training on Balance Function and Gait in Patients with Stroke-Induced Hemiplegia
12
作者 Xiaoqing Ma Zhen Ma +2 位作者 Ye Xu Meng Han Hui Yan 《Proceedings of Anticancer Research》 2024年第1期54-60,共7页
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala... Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation. 展开更多
关键词 Stroke-induced hemiplegia Repetitive transcranial magnetic stimulation Motor control training Balance function gait
下载PDF
介孔Worm-like孔壁晶化制备微孔-介孔分子筛研究
13
作者 徐玲 张强 +5 位作者 陈衍川 周耿旭 高新 张淼 李丹丹 刘宗瑞 《大连理工大学学报》 EI CAS CSCD 北大核心 2018年第6期559-563,共5页
采用水热孔壁晶化法,以Worm-like介孔分子筛为硅源,十八水合硫酸铝为铝源,制备不同硅铝比微孔-介孔ZSM-5复合分子筛,XRD、FT-IR、N2吸附-脱附、TEM等表征结果证明,用此方法成功制备出一系列微孔-介孔ZSM-5复合分子筛.将一系列复合分子... 采用水热孔壁晶化法,以Worm-like介孔分子筛为硅源,十八水合硫酸铝为铝源,制备不同硅铝比微孔-介孔ZSM-5复合分子筛,XRD、FT-IR、N2吸附-脱附、TEM等表征结果证明,用此方法成功制备出一系列微孔-介孔ZSM-5复合分子筛.将一系列复合分子筛用于催化苯酚叔丁基化反应,在反应温度145℃、n(苯酚)∶n(叔丁醇)=1∶2.5条件下,硅铝比为15、25的复合分子筛有较强的催化活性,苯酚转化率和2,4-二叔丁基苯酚选择性分别超过90%和42%. 展开更多
关键词 微孔-介孔分子筛 worm-like介孔分子筛 孔壁晶化 催化性能
下载PDF
Worm-like分子筛负载磷钨酸催化剂的制备及光降解甲基橙的性能研究 被引量:4
14
作者 美春 王月林 +1 位作者 徐玲 刘宗瑞 《环境污染与防治》 CAS CSCD 北大核心 2014年第12期27-30,共4页
以Worm-like分子筛为载体,采用浸渍法制备不同磷钨酸负载量的负载型催化剂,并采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和N2吸附/脱附等手段对负载型磷钨酸催化剂进行表征。结果表明,磷钨酸成功负载在Worm-like分子筛上,且随着磷钨酸... 以Worm-like分子筛为载体,采用浸渍法制备不同磷钨酸负载量的负载型催化剂,并采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和N2吸附/脱附等手段对负载型磷钨酸催化剂进行表征。结果表明,磷钨酸成功负载在Worm-like分子筛上,且随着磷钨酸负载量的增加,FT-IR、XRD和N2吸附/脱附结果呈规律性变化。将该系列催化剂用于光催化降解甲基橙实验,结果表明,甲基橙质量浓度为20mg/L,磷钨酸负载量为70%(质量分数)时,甲基橙降解率为87.2%;回收催化剂并重复使用3次,甲基橙降解率仍达75%以上。 展开更多
关键词 光催化 worm-like分子筛 甲基橙
下载PDF
MMRGait-1.0:多视角多穿着条件下的雷达时频谱图步态识别数据集 被引量:5
15
作者 杜兰 陈晓阳 +2 位作者 石钰 薛世鲲 解蒙 《雷达学报(中英文)》 EI CSCD 北大核心 2023年第4期892-905,共14页
步态识别作为一种生物识别技术,在实际生活中通常被认为是一项检索任务。然而,受限于现有雷达步态识别数据集的规模,目前的研究主要针对分类任务且局限于单一行走视角和相同穿着条件,这限制了基于雷达的步态识别在实际场景中的应用。该... 步态识别作为一种生物识别技术,在实际生活中通常被认为是一项检索任务。然而,受限于现有雷达步态识别数据集的规模,目前的研究主要针对分类任务且局限于单一行走视角和相同穿着条件,这限制了基于雷达的步态识别在实际场景中的应用。该文公开了一个多视角多穿着条件下的雷达步态识别数据集,该数据集使用毫米波雷达采集了121位受试者在多种穿着条件下沿不同视角行走的时频谱图数据,每位受试者共采集8个视角,每个视角采集10组,其中6组为正常穿着,2组为穿大衣,2组为挎包。同时,该文提出一种基于检索任务的雷达步态识别方法,并在公布数据集上进行了实验,实验结果可以作为基准性能指标,方便更多学者在此数据集上开展进一步研究。 展开更多
关键词 毫米波雷达 步态识别 检索任务 多视角多穿着条件 公开数据集
下载PDF
3-D Gait Identification Utilizing Latent Canonical Covariates Consisting of Gait Features 被引量:1
16
作者 Ramiz Gorkem Birdal Ahmet Sertbas 《Computers, Materials & Continua》 SCIE EI 2023年第9期2727-2744,共18页
Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on fe... Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’walking patterns to be recognized.Existing research in this area has primarily focused on feature analysis through the extraction of individual features,which captures most of the information but fails to capture subtle variations in gait dynamics.Therefore,a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced.The gait features extracted from body halves divided by anatomical planes on vertical,horizontal,and diagonal axes are grouped to form canonical gait covariates.Canonical Correlation Analysis is utilized to measure the strength of association between the canonical covariates of gait.Thus,gait assessment and identification are enhancedwhenmore semantic information is available through CCA-basedmulti-feature fusion.Hence,CarnegieMellon University’s 3D gait database,which contains 32 gait samples taken at different paces,is utilized in analyzing gait characteristics.The performance of Linear Discriminant Analysis,K-Nearest Neighbors,Naive Bayes,Artificial Neural Networks,and Support Vector Machines was improved by a 4%average when the CCA-utilized gait identification approachwas used.Asignificant maximumaccuracy rate of 97.8%was achieved throughCCA-based gait identification.Beyond that,the rate of false identifications and unrecognized gaits went down to half,demonstrating state-of-the-art for gait identification. 展开更多
关键词 gait identification canonical covariates multivariate data analysis gait determinant
下载PDF
A simple method to synthesize worm-like AlN nanowires and its field emission studies
17
作者 Qi Liang Meng-Qi Yang +1 位作者 Chang-Hao Wang Ru-Zhi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期469-474,共6页
The worm-like AlN nanowires are fabricated by the plasma-enhanced chemical vapor deposition(PECVD)on Si substrates through using Al powder and N2 as precursors,CaF2 as fluxing medium,Au as catalyst,respectively.The as... The worm-like AlN nanowires are fabricated by the plasma-enhanced chemical vapor deposition(PECVD)on Si substrates through using Al powder and N2 as precursors,CaF2 as fluxing medium,Au as catalyst,respectively.The as-grown worm-like AlN nanowires each have a polycrystalline and hexagonal wurtzite structure.Their diameters are about 300 nm,and the lengths are over 10μm.The growth mechanism of worm-like AlN nanowires is discussed.Hydrogen plasma plays a very important role in forming the polycrystalline structure and rough surfaces of worm-like AlN nanowires.The worm-like AlN nanowires exhibit an excellent field-emission(FE)property with a low turn-on field of 4.5 V/μm at a current density of 0.01 mA/cm^(2) and low threshold field of 9.9 V/μm at 1 mA/cm^(2).The emission current densities of worm-like AlN nanowires each have a good stability.The enhanced FE properties of worm-like AlN nanowires may be due to their polycrystalline and rough structure with nanosize and high aspect ratio.The excellent FE properties of worm-like AlN nanowires can be explained by a grain boundary conduction mechanism.The results demonstrate that the worm-like AlN nanowires prepared by the proposed simple and the PECVD method possesses the potential applications in photoelectric and field-emission devices. 展开更多
关键词 worm-like aluminum nitride nanowires growth mechanism plasma enhanced chemical vapor deposition field-emission property
下载PDF
Morphological stability of worm-like vesicles consisting of amphiphilic diblock copolymer against external stress
18
作者 Eri Yoshida 《Chemical Reports》 2019年第2期102-107,共6页
The morphological stability of vesicles consisting of an amphiphilic poly(methacrylic acid)- block-poly(methyl methacrylate-random-methacrylic acid) diblock copolymer, PMAA-b-P(MMA-r-MAA), was investigated against the... The morphological stability of vesicles consisting of an amphiphilic poly(methacrylic acid)- block-poly(methyl methacrylate-random-methacrylic acid) diblock copolymer, PMAA-b-P(MMA-r-MAA), was investigated against the external stresses of pH, salt concentration and polyamine. The worm-like vesicles underwent a partial fusion at pH 12, however, they retained the worm-like shape at pH 13 due to electrostatic repulsion. On the other hand, the spherical vesicles were completely fused at pH 12, transformed into a sheet and did not retain their shape under the higher basic condition. Similarly, the worm-like vesicles retained their morphology in 0.1 mol% solutions of sodium chloride and sodium dodecyl sulfate, while the spherical vesicles caused division and fusion even at much lower concentrations. Poly(2-dimethylaminoethyl methacrylate)(PDMAEMA) transformed the worm-like vesicle into a cleavable sheet, while it changed the spherical vesicles into a sheet without a specific form. It was found that this transformation based on the acid-base interaction between the carboxylic acid of the MAA block and the amine of the PDMAEMA was dependent on the molecular weight of the PDMAEMA. The short PDMAEMA retarded the fusion of the vesicles. 展开更多
关键词 morphological stability external stresses worm-like vesicles spherical vesicles AMPHIPHILIC DIBLOCK COPOLYMER POLYAMINE
下载PDF
Assessment of hindlimb motor recovery affer severe thoracic spinal cord injury in rats: classification of CatWalk XT■ gait analysis parameters 被引量:1
19
作者 Guoli Zheng Hao Zhang +6 位作者 Mohamed Tail Hao Wang Johannes Walter Thomas Skutella Andreas Unterberg Klaus Zweckberger Alexander Younsi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1084-1089,共6页
Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used an... Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used and clinically relevant thoracic contusion/compression spinal cord injury model in rats. Rats were randomly assigned to either a T9 spinal cord injury or sham laminectomy. Locomotion recovery was assessed using the Basso, Beattie, and Bresnahan open field rating scale and the CatWalk XT■gait analysis. To determine the potential bias from weight changes, corrected hindlimb(H) values(divided by the unaffected forelimb(F) values) were calculated. Six weeks after injury, cyst formation, astrogliosis, and the deposition of chondroitin sulfate glycosaminoglycans were assessed by immunohistochemistry staining. Compared with the baseline, a significant spontaneous recovery could be observed in the CatWalk XT■parameters max intensity, mean intensity, max intensity at%, and max contact mean intensity from 4 weeks after injury onwards. Of note, corrected values(H/F) of CatWalk XT■parameters showed a significantly less vulnerability to the weight changes than absolute values, specifically in static parameters. The corrected CatWalk XT■parameters were positively correlated with the Basso, Beattie, and Bresnahan rating scale scores, cyst formation, the immunointensity of astrogliosis and chondroitin sulfate glycosaminoglycan deposition. The CatWalk XT■gait analysis and especially its static parameters, therefore, seem to be highly useful in assessing spontaneous recovery of hindlimb function after severe thoracic spinal cord injury. Because many CatWalk XT■parameters of the hindlimbs seem to be affected by body weight changes, using their corrected values might be a valuable option to improve this dependency. 展开更多
关键词 Basso Beattie and Bresnahan rating scale behavioral assessment CatWalk XT■gait analysis contusive and compressive injury hindlimb motor function histological changes spinal cord injury spontaneous recovery THORACIC weight
下载PDF
Gait Analysis of a Subject with Tarsometatarsal Prosthesis
20
作者 Carlos Diaz Novo Walter Mar Haller +3 位作者 Emiliano Alvarez Ruiz Micaela González Castillo Manuel Bárbaro Cuadra Mateo Olivera García 《Journal of Biosciences and Medicines》 2023年第10期284-297,共14页
Introduction: Gait analysis of an adult man after trans-metatarsal unilateral amputation is described. Objective: Instrumental gait analysis of a subject 15 years after trans-metatarsal unilateral amputation in two fo... Introduction: Gait analysis of an adult man after trans-metatarsal unilateral amputation is described. Objective: Instrumental gait analysis of a subject 15 years after trans-metatarsal unilateral amputation in two footwear conditions: while walking barefoot and with prosthesis. Materials and Methods: In a movement analysis laboratory, locomotion studies were carried out at freely chosen walking speed by a 65-year-old subject, obtaining kinematic, kinetic and surface electromyographic data in time and space. Gait analysis was performed using instrumental technologies from a digital eco-system applying walking protocols. Results: When the patient wore the prosthesis, several positive improvements were observed in various aspects of gait. These included enhancements in the base of support, gait speed, and joint range of movements. Additionally, there was a slight improvement in the vertical ground reaction forces pattern, indicating a positive effect of the assistive technology. Furthermore, the use of the prosthesis led to a more organized pattern of muscle activity, which further supports its beneficial impact. However, it is worth noting that some challenges still persisted, particularly regarding stabilizing the body during the double support phase. Despite this difficulty, the overall findings suggest that the use of the prosthesis offers valuable improvements to the patient’s gait dynamics. Conclusions: After conducting a thorough analysis of the parameters related to the gait of a subject who underwent a trans-metatarsal unilateral amputation fifteen years ago, it was found that the use of prosthesis had a positive impact. This study demonstrated important improvements in some kinematic and kinetic parameters, including muscle activation patterns, indicating an increase in comfort and confidence while utilizing the prosthetic device. 展开更多
关键词 Tarsometatarsal Amputation PROSTHESIS gait Motion Analysis Laboratory
下载PDF
上一页 1 2 224 下一页 到第
使用帮助 返回顶部