A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe compli...A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.展开更多
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual...It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.展开更多
The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimate...The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.展开更多
Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. T...Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. The initiation and propagation of hydraulic fractures will cause stress redistribution and may activate natural fractures in the reservoir. Due to the limitation of the analytical method in calculation of induced stresses, we propose a numerical method, which incorporates the interaction of hydraulic fractures and the wellbore, and analyzes the stress distri- bution in the reservoir under different stage spacing. Simulation results indicate the following: (1) The induced stress was overestimated from the analytical method because it did not take into account the interaction between hydraulic fractures and the horizontal wellbore. (2) The hydraulic fracture had a considerable effect on the redis- tribution of stresses in the direction of the horizontal wellbore in the reservoir. The stress in the direction per- pendicular to the horizontal wellbore after hydraulic frac- turing had a minor change compared with the original in situ stress. (3) Stress interferences among fractures were greatly connected with the stage spacing and the distance from the wellbore. When the fracture length was 200 m, and the stage spacing was 50 m, the stress redistribution due to stage fracturing may divert the original stress pat- tern, which might activate natural fractures so as to generate a complex fracture network.展开更多
Space debris is a major problem for all the nations that are currently active in space. Adopting high-precision measuring techniques will help produce a reliable and accurate catalog for space debris and collision avo...Space debris is a major problem for all the nations that are currently active in space. Adopting high-precision measuring techniques will help produce a reliable and accurate catalog for space debris and collision avoidance. Laser ranging is a kind of real-time measuring technology with high precision for space debris observation. The first space-debris laser-ranging experiment in China was performed at the Shanghai Observatory in July 2008 with a ranging precision of about 60-80 cm. The experi- mental results showed that the return signals from the targets with a range of 900 km were quite strong, with a power of 40W (2J at 20 Hz) using a 10ns pulse width laser at 532 nm wavelength. The performance of the preliminary laser ranging system and the observed results in 2008 and 2010 are also introduced.展开更多
Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Alta...Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).展开更多
Let Tμ,b,m be the higher order commutator generated by a generalized fractional integral operator Tμ and a BMO function b. In this paper, we will study the boundedness of Tμ,b,m on classical Hardy spaces and Herz-t...Let Tμ,b,m be the higher order commutator generated by a generalized fractional integral operator Tμ and a BMO function b. In this paper, we will study the boundedness of Tμ,b,m on classical Hardy spaces and Herz-type Hardy spaces.展开更多
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
文摘A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.
文摘It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.
文摘The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.
基金supported by the Natural Science Foundation of China (Grant No. 51490653, Basic Theoretical Research of Shale Oil and Gas Effective Development)
文摘Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. The initiation and propagation of hydraulic fractures will cause stress redistribution and may activate natural fractures in the reservoir. Due to the limitation of the analytical method in calculation of induced stresses, we propose a numerical method, which incorporates the interaction of hydraulic fractures and the wellbore, and analyzes the stress distri- bution in the reservoir under different stage spacing. Simulation results indicate the following: (1) The induced stress was overestimated from the analytical method because it did not take into account the interaction between hydraulic fractures and the horizontal wellbore. (2) The hydraulic fracture had a considerable effect on the redis- tribution of stresses in the direction of the horizontal wellbore in the reservoir. The stress in the direction per- pendicular to the horizontal wellbore after hydraulic frac- turing had a minor change compared with the original in situ stress. (3) Stress interferences among fractures were greatly connected with the stage spacing and the distance from the wellbore. When the fracture length was 200 m, and the stage spacing was 50 m, the stress redistribution due to stage fracturing may divert the original stress pat- tern, which might activate natural fractures so as to generate a complex fracture network.
基金supported by the Chinese Space Agency and the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. 2920100701)
文摘Space debris is a major problem for all the nations that are currently active in space. Adopting high-precision measuring techniques will help produce a reliable and accurate catalog for space debris and collision avoidance. Laser ranging is a kind of real-time measuring technology with high precision for space debris observation. The first space-debris laser-ranging experiment in China was performed at the Shanghai Observatory in July 2008 with a ranging precision of about 60-80 cm. The experi- mental results showed that the return signals from the targets with a range of 900 km were quite strong, with a power of 40W (2J at 20 Hz) using a 10ns pulse width laser at 532 nm wavelength. The performance of the preliminary laser ranging system and the observed results in 2008 and 2010 are also introduced.
文摘Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).
基金Supported Partially by NSF of China (10371087) Education Committee of Anhui Province (2003kj034zd).
文摘Let Tμ,b,m be the higher order commutator generated by a generalized fractional integral operator Tμ and a BMO function b. In this paper, we will study the boundedness of Tμ,b,m on classical Hardy spaces and Herz-type Hardy spaces.