This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in...This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x- ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence t of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of-0.89 GPa.展开更多
Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and d...Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and developed by authors in this paper; planar segments are used as the reflection mirror instead of curved segments because of the simple process and low cost. After the complex assembling process with a special metal supporter, a final circle light spot of φ 12 mm was obtained in the visible light testing experiment of GIO; the effective area of 1710.51 mm^2@ 1 keV and 530 mm^2@8 keV is obtained in the x-ray testing experiment with the GIO-SDD combination, which is supposed to be a concentrating detector in xray detection systems.展开更多
Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classic...Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions.展开更多
Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this in...Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.展开更多
The advancement in grazing incidence X-ray scattering(GIWAXS)techniques at synchrotron radiation facilities has significantly deepened our understanding of semiconducting polymers.However,investigation of ultrathin po...The advancement in grazing incidence X-ray scattering(GIWAXS)techniques at synchrotron radiation facilities has significantly deepened our understanding of semiconducting polymers.However,investigation of ultrathin polymer films under tensile conditions poses challenge,primarily due to limitations associated with the lack of suitable sample preparation methods and new stretching devices.This study addresses these limitations by designing and developing an in-situ temperature-controllable stretching sample stage,which enables real-time structural measurements of ultrathin polymer films at Beijing Synchrotron Radiation Facility.In particular,we report,for the first time,in-situ GIWAXS results of representative semiconducting polymer thin films under variable-temperature stretching.This research has overcome the limitations imposed by sample constraints,thus facilitating the achievement of valuable insights into the behavior of ultrathin polymer films under tensile conditions.Distinct changes in the molecular ordering and packing within the polymer thin films as a result of increasing applied strain and temperature have been uncovered.This study promotes future developments in the field,thus enabling the design and optimization of intrinsically stretchable electronic devices and other technologically relevant applications.展开更多
The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-n...The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.展开更多
Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal mate...Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal materials, etc. At present, SAXS, wide angle X-ray scattering(WAXS), simultaneous SAXS/WAXS,grazing incident SAXS, and anomalous SAXS techniques are available for end user to conduct diverse experiments at this beamline. The sample-to-detector distance is adjustable from 0.2 m to 5 m. The practicable q-range is 0.03–3.6 nm-1at incident X-ray of 10 ke V for conventional SAXS whilst a continuous q-region of0.06–33 nm-1can be achieved in simultaneous SAXS/WAXS mode. Time-resolved SAXS measurements in sub-second level was achieved by the beamline upgrating in 2013. This paper gives detailed descriptions about the status, performance and applications of the SAXS beamline.展开更多
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incid...The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more In atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.展开更多
We investigate the Ne-like Cr x-ray laser at 28.6 nm by using a modified ID lagrangian hydrodynamic code MEDI03 coupled with an atomic physics data package and a 2D ray tracing code as a post-processor. The laser pump...We investigate the Ne-like Cr x-ray laser at 28.6 nm by using a modified ID lagrangian hydrodynamic code MEDI03 coupled with an atomic physics data package and a 2D ray tracing code as a post-processor. The laser pumping configuration includes two prepulses and one main pulse. The first prepulse normally irradiates the target, while the second prepulse and the main pulse irradiate the target at grazing-incident angles. We predict that saturation can be achieved for the Ne-like Cr x-ray lasers with a total pumping energy of 125mJ, Good beam qualities with no deflecting angle and a small divergence angle of 5 mrad are observed.展开更多
A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xe^q+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are c...A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xe^q+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are calculated and compared with experiment data. The simulation results of image energy gain are in good agreement with the experiment data. Meanwhile, in the present work, the reflection coefficient of incident Xe^q+ on Al(111) surface as a function of the incidence angle, energy and charge state is also studied.展开更多
The fabrication of bit-patterned media (BPM) is crucial for new types of hard disk drives. The development of methods for the production of BPM is progressing rapidly. Conventional lithography reaches the limit rega...The fabrication of bit-patterned media (BPM) is crucial for new types of hard disk drives. The development of methods for the production of BPM is progressing rapidly. Conventional lithography reaches the limit regarding lateral resolution, and new routes are needed. In this study, we mainly focus on the dependence of the size and shape of magnetic nanodots on the Ar+-ion etching duration, using silica dots as masks. Two-dimensional (2D) arrays of magnetic nanostructures are created using silica-filled diblock-copolymer micelles as templates. After the self-assembly of the micelles into 2D hexagonal arrays, the polymer shell is removed, and the SiO2 cores are utilized to transform the morphology into a (Co/Pt)2-multilayer via ion etching under normal incidence. The number of preparation steps is kept as low as possible to simplify the formation of the nanostructure arrays. High-resolution in situ grazing-incidence small-angle X-ray scattering (GISAXS) investigations are performed during the Ar+-ion etching to monitor and control the fabrication process. The in situ investigation provides information on how the etching conditions can be improved for further ex situ experiments. The GISAXS patterns are compared with simulations. We observe that the dots change in shape from cylindrical to conical during the etching process. The magnetic behavior is studied by utilizing the magneto-optic Kerr effect. The Co/Pt dots exhibit different magnetic behaviors depending on their size, interparticle distance, and etching time. They show ferromagnetism with an easy axis of magnetization perpendicular to the film. A systematic dependence of the coercivitv on the dot size is observed.展开更多
Carbon nanotubes (CNTs) grown on plain substrates SiO2/Si(100) by a direct current and hot filaments catalytic chemical vapor deposition process have been studied by synchrotron X-ray absorption near edge spectroscopy...Carbon nanotubes (CNTs) grown on plain substrates SiO2/Si(100) by a direct current and hot filaments catalytic chemical vapor deposition process have been studied by synchrotron X-ray absorption near edge spectroscopy (XANES) technique to theoretically investigate the angular-dependence of carbone (C) K-edge π* and σ* transitions. Experimental XANES spectra show that π* resonance increases with the incidence angle from normal to grazing incidence angle while σ* resonance decreases. This has been explained by the sine-square and cosine-square dependencies of π* and σ* intensities, respectively. These results were confirmed by theoretical XANES curves of highly oriented pyrolytic graphite (HOPG) and CNTs plotted versus incidence angle. It has been shown that π* and σ* transitions strongly depend on the nature of polarized light (linearly or circularly). At the linear polarized light, π* resonance is a preference as well as at right-circular polarized. At the left-circular polarized light, σ* resonance is a preference. The π* intensities are high at parallel orientation and the σ* intensities are low at normal orientation. The smallest π* intensity is noticed at normal orientation, where the π* orbitals are supposed to be lying parallel to the surface plane for perfectly aligned HOPG or CNTs. This explains the incomplete extinction of π* intensity. We noticed at parallel orientation a region where any π* and σ* transitions did not expect because of the lack of polarization light.展开更多
溶液法是新型光电器件制备的重要手段,然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成,传统的实验表征大多在空气环境下进行,这显然很难反映薄膜结构与器件性能间的真实关联,因此急需对溶液成膜过程的微结构演...溶液法是新型光电器件制备的重要手段,然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成,传统的实验表征大多在空气环境下进行,这显然很难反映薄膜结构与器件性能间的真实关联,因此急需对溶液成膜过程的微结构演变开展原位实时研究.为了实现溶液法成膜中的结构与形貌的同步辐射掠入射广角散射实时观测,本文结合上海同步辐射光源线站布局,报道了一种基于手套箱的原位成膜观测装置,可实现标准手套箱环境(c(H_(2)O,O_(2))<1×10^(-6))下远程控制薄膜旋涂、涂布及样品后处理,并实时可视化监测微结构和形貌演变.基于该装置进行的钙钛矿薄膜狭缝涂布大面积成膜结晶过程的原位GIWAXS/GISAXS(gtrazing incidence wide and small angle X-ray scattering)可视化测试揭示了薄膜微结构转变的内在驱动力:钙钛矿薄膜沉积界面层的优化对提升钙钛矿成核速率、诱导结晶择优取向、形成晶粒有序堆叠等具有“共性作用”,同时在成膜过程中的新生中间相显著提升软晶格薄膜质量和稳定性.基于各层均采用卷对卷全溶液狭缝涂布方法制备的大面积全柔性三维钙钛矿薄膜太阳能电池转换效率提升至5.23%(单个器件面积约15 cm^(2)),为迄今报道的这一体系该尺寸的全溶液狭缝涂布柔性钙钛矿器件的最高器件效率之一.因而,基于该同步辐射原位GIWAXS/S/GISAXS装置可以获得控制薄膜生长界面特性和薄膜品质的关键工艺,指导优化制备薄膜的最佳工艺条件.展开更多
To obtain short pulse width and high peak power laser, a 7 kHz sub-nanosecond microchip laser amplified by a grazing incidence double pass slab amplifier is experimentally demonstrated in this Letter. We use a compact...To obtain short pulse width and high peak power laser, a 7 kHz sub-nanosecond microchip laser amplified by a grazing incidence double pass slab amplifier is experimentally demonstrated in this Letter. We use a compact side-pumped Nd∶YVO4 bounce amplifier with grazing incidence beam for achieving high gains and power extraction. Laser output power of 7.37 W at 7 kHz, 1.2 MW pulse peak power with 877 ps duration and 1.05 mJ energy, 25 pm spectral width, and near diffraction limited mode beam quality are achieved, and the optical-to-optical efficiency is 18%. The laser is packaged in a volume of 356 mm × 226 mm × 84 mm and may be used for applications such as laser altimeters and ladar systems.展开更多
In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with t...In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with the degree of absorbing ability of the CIGS solar cell.We tried to characterize the depth profile of the lattice parameters of the CIGS absorbing layer using a glancing incidence X-ray diffraction(GIXRD)technique,and then investigate the bandgap grading of the CIGS absorbing layer.When the glancing incident angle increased from 0.50 to 5.00°,the a and c lattice parameters of the CIGS absorbing layer gradually decreased from 5.7776(3)to 5.6905(2)?,and 11.3917(3)to 11.2114(2)?,respectively.The depth profile of the lattice parameters as a function of the incident angle was consistent with vertical variation in the compositionof In or Ga with depth in the absorbing layer.The variation of the lattice parameters was due to the difference between the ionic radius of In and Ga co-occupying at the same crystallographic site.According to the results of the depth profile of the refined parameters using GIXRD data,the bandgap of the CIGS absorber layer was graded over a range of 1.222-1.532 eV.This approach allows to determine the In or Ga gradients in the CIGS absorbing layer,and to nondestructively guess the bandgap depth profile through the refinement of the lattice parameters using GIXRD data on the assumption that the changes of the lattice parameters or unit-cell volume follow a good approximation to Vegard’s law.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60506001,60776047,60976045 and 60836003)the National Basic Research Programme of China (Grant No. 2007CB936700)the National Science Foundation for Distinguished Young Scholars,China (Grant No. 60925017)
文摘This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x- ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence t of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of-0.89 GPa.
基金supported by the National Natural Science Foundation of China(Grant No.61471357)the State Key Laboratory of Geo-Information Engineering Foundation(Grant No.SKLGIE2014-M-2-1)
文摘Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and developed by authors in this paper; planar segments are used as the reflection mirror instead of curved segments because of the simple process and low cost. After the complex assembling process with a special metal supporter, a final circle light spot of φ 12 mm was obtained in the visible light testing experiment of GIO; the effective area of 1710.51 mm^2@ 1 keV and 530 mm^2@8 keV is obtained in the x-ray testing experiment with the GIO-SDD combination, which is supposed to be a concentrating detector in xray detection systems.
文摘Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0701202)the National Natural Science Foundation of China(Grant No.11875087)。
文摘Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.
基金the support from the Science Fund for Distinguished Young Scholars of Tianjin (23JCJQJC00240)the Fundamental Research Funds for the Central Universities+2 种基金the Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Peiyang Scholar Program of Tianjin Universitysupported by the National Natural Science Foundation of China (12375302)。
文摘The advancement in grazing incidence X-ray scattering(GIWAXS)techniques at synchrotron radiation facilities has significantly deepened our understanding of semiconducting polymers.However,investigation of ultrathin polymer films under tensile conditions poses challenge,primarily due to limitations associated with the lack of suitable sample preparation methods and new stretching devices.This study addresses these limitations by designing and developing an in-situ temperature-controllable stretching sample stage,which enables real-time structural measurements of ultrathin polymer films at Beijing Synchrotron Radiation Facility.In particular,we report,for the first time,in-situ GIWAXS results of representative semiconducting polymer thin films under variable-temperature stretching.This research has overcome the limitations imposed by sample constraints,thus facilitating the achievement of valuable insights into the behavior of ultrathin polymer films under tensile conditions.Distinct changes in the molecular ordering and packing within the polymer thin films as a result of increasing applied strain and temperature have been uncovered.This study promotes future developments in the field,thus enabling the design and optimization of intrinsically stretchable electronic devices and other technologically relevant applications.
基金the National Natural Science Foundation of China(Nos.12005250,U1932167,and U1432244).
文摘The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.
基金Supported by the National Basic Research Program of China(Nos.2011CB911104,2011CB606104,and 2011CB605604)National Natural Science Foundation of China(Nos.11305249,11005143,50903089,51273210,11405259,51303200,and 11305242)Knowledge Innovation Program of Chinese Academy of Sciences
文摘Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal materials, etc. At present, SAXS, wide angle X-ray scattering(WAXS), simultaneous SAXS/WAXS,grazing incident SAXS, and anomalous SAXS techniques are available for end user to conduct diverse experiments at this beamline. The sample-to-detector distance is adjustable from 0.2 m to 5 m. The practicable q-range is 0.03–3.6 nm-1at incident X-ray of 10 ke V for conventional SAXS whilst a continuous q-region of0.06–33 nm-1can be achieved in simultaneous SAXS/WAXS mode. Time-resolved SAXS measurements in sub-second level was achieved by the beamline upgrating in 2013. This paper gives detailed descriptions about the status, performance and applications of the SAXS beamline.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60506001, 60776047, 60976045, and 60836003)the National Basic Research Programme of China (Grant No. 2007CB936700)the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 60925017)
文摘The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more In atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.
基金supported by the National Natural Science Foundation of China ( Grant Nos 60678007,60621063 and 10774184)the State Key Development Program for Basic Research of China (Grant No 2007CB815101)
文摘We investigate the Ne-like Cr x-ray laser at 28.6 nm by using a modified ID lagrangian hydrodynamic code MEDI03 coupled with an atomic physics data package and a 2D ray tracing code as a post-processor. The laser pumping configuration includes two prepulses and one main pulse. The first prepulse normally irradiates the target, while the second prepulse and the main pulse irradiate the target at grazing-incident angles. We predict that saturation can be achieved for the Ne-like Cr x-ray lasers with a total pumping energy of 125mJ, Good beam qualities with no deflecting angle and a small divergence angle of 5 mrad are observed.
基金Project supported by the Research Fund for the Doctoral Program of Hlgher Education (Grant No 20030730004), the National Natural Science Foundation of China (Grant No 10374039) and the Natural Science Foundation of Gansu Province, China (Grant No ZS031-A25-001-Z).
文摘A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xe^q+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are calculated and compared with experiment data. The simulation results of image energy gain are in good agreement with the experiment data. Meanwhile, in the present work, the reflection coefficient of incident Xe^q+ on Al(111) surface as a function of the incidence angle, energy and charge state is also studied.
文摘The fabrication of bit-patterned media (BPM) is crucial for new types of hard disk drives. The development of methods for the production of BPM is progressing rapidly. Conventional lithography reaches the limit regarding lateral resolution, and new routes are needed. In this study, we mainly focus on the dependence of the size and shape of magnetic nanodots on the Ar+-ion etching duration, using silica dots as masks. Two-dimensional (2D) arrays of magnetic nanostructures are created using silica-filled diblock-copolymer micelles as templates. After the self-assembly of the micelles into 2D hexagonal arrays, the polymer shell is removed, and the SiO2 cores are utilized to transform the morphology into a (Co/Pt)2-multilayer via ion etching under normal incidence. The number of preparation steps is kept as low as possible to simplify the formation of the nanostructure arrays. High-resolution in situ grazing-incidence small-angle X-ray scattering (GISAXS) investigations are performed during the Ar+-ion etching to monitor and control the fabrication process. The in situ investigation provides information on how the etching conditions can be improved for further ex situ experiments. The GISAXS patterns are compared with simulations. We observe that the dots change in shape from cylindrical to conical during the etching process. The magnetic behavior is studied by utilizing the magneto-optic Kerr effect. The Co/Pt dots exhibit different magnetic behaviors depending on their size, interparticle distance, and etching time. They show ferromagnetism with an easy axis of magnetization perpendicular to the film. A systematic dependence of the coercivitv on the dot size is observed.
文摘Carbon nanotubes (CNTs) grown on plain substrates SiO2/Si(100) by a direct current and hot filaments catalytic chemical vapor deposition process have been studied by synchrotron X-ray absorption near edge spectroscopy (XANES) technique to theoretically investigate the angular-dependence of carbone (C) K-edge π* and σ* transitions. Experimental XANES spectra show that π* resonance increases with the incidence angle from normal to grazing incidence angle while σ* resonance decreases. This has been explained by the sine-square and cosine-square dependencies of π* and σ* intensities, respectively. These results were confirmed by theoretical XANES curves of highly oriented pyrolytic graphite (HOPG) and CNTs plotted versus incidence angle. It has been shown that π* and σ* transitions strongly depend on the nature of polarized light (linearly or circularly). At the linear polarized light, π* resonance is a preference as well as at right-circular polarized. At the left-circular polarized light, σ* resonance is a preference. The π* intensities are high at parallel orientation and the σ* intensities are low at normal orientation. The smallest π* intensity is noticed at normal orientation, where the π* orbitals are supposed to be lying parallel to the surface plane for perfectly aligned HOPG or CNTs. This explains the incomplete extinction of π* intensity. We noticed at parallel orientation a region where any π* and σ* transitions did not expect because of the lack of polarization light.
文摘溶液法是新型光电器件制备的重要手段,然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成,传统的实验表征大多在空气环境下进行,这显然很难反映薄膜结构与器件性能间的真实关联,因此急需对溶液成膜过程的微结构演变开展原位实时研究.为了实现溶液法成膜中的结构与形貌的同步辐射掠入射广角散射实时观测,本文结合上海同步辐射光源线站布局,报道了一种基于手套箱的原位成膜观测装置,可实现标准手套箱环境(c(H_(2)O,O_(2))<1×10^(-6))下远程控制薄膜旋涂、涂布及样品后处理,并实时可视化监测微结构和形貌演变.基于该装置进行的钙钛矿薄膜狭缝涂布大面积成膜结晶过程的原位GIWAXS/GISAXS(gtrazing incidence wide and small angle X-ray scattering)可视化测试揭示了薄膜微结构转变的内在驱动力:钙钛矿薄膜沉积界面层的优化对提升钙钛矿成核速率、诱导结晶择优取向、形成晶粒有序堆叠等具有“共性作用”,同时在成膜过程中的新生中间相显著提升软晶格薄膜质量和稳定性.基于各层均采用卷对卷全溶液狭缝涂布方法制备的大面积全柔性三维钙钛矿薄膜太阳能电池转换效率提升至5.23%(单个器件面积约15 cm^(2)),为迄今报道的这一体系该尺寸的全溶液狭缝涂布柔性钙钛矿器件的最高器件效率之一.因而,基于该同步辐射原位GIWAXS/S/GISAXS装置可以获得控制薄膜生长界面特性和薄膜品质的关键工艺,指导优化制备薄膜的最佳工艺条件.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61705268)the NationalScience and Technology Major Project(No.2014ZX01005-101-003)the Innovation Project of Army Engineering University(No.JX2019-01)。
文摘To obtain short pulse width and high peak power laser, a 7 kHz sub-nanosecond microchip laser amplified by a grazing incidence double pass slab amplifier is experimentally demonstrated in this Letter. We use a compact side-pumped Nd∶YVO4 bounce amplifier with grazing incidence beam for achieving high gains and power extraction. Laser output power of 7.37 W at 7 kHz, 1.2 MW pulse peak power with 877 ps duration and 1.05 mJ energy, 25 pm spectral width, and near diffraction limited mode beam quality are achieved, and the optical-to-optical efficiency is 18%. The laser is packaged in a volume of 356 mm × 226 mm × 84 mm and may be used for applications such as laser altimeters and ladar systems.
基金supported by Korea Research Institute of Standards and Science(KRISS–2019–GP2019-0014)。
文摘In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with the degree of absorbing ability of the CIGS solar cell.We tried to characterize the depth profile of the lattice parameters of the CIGS absorbing layer using a glancing incidence X-ray diffraction(GIXRD)technique,and then investigate the bandgap grading of the CIGS absorbing layer.When the glancing incident angle increased from 0.50 to 5.00°,the a and c lattice parameters of the CIGS absorbing layer gradually decreased from 5.7776(3)to 5.6905(2)?,and 11.3917(3)to 11.2114(2)?,respectively.The depth profile of the lattice parameters as a function of the incident angle was consistent with vertical variation in the compositionof In or Ga with depth in the absorbing layer.The variation of the lattice parameters was due to the difference between the ionic radius of In and Ga co-occupying at the same crystallographic site.According to the results of the depth profile of the refined parameters using GIXRD data,the bandgap of the CIGS absorber layer was graded over a range of 1.222-1.532 eV.This approach allows to determine the In or Ga gradients in the CIGS absorbing layer,and to nondestructively guess the bandgap depth profile through the refinement of the lattice parameters using GIXRD data on the assumption that the changes of the lattice parameters or unit-cell volume follow a good approximation to Vegard’s law.