Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvatio...Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvation induced by glucose oxidase(GOx),after their efficient delivery to tumor sites,GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ.Herein,a pH-responsive epigallocatechin gallate(EGCG)-conjugated low-molecular-weight chitosan(LC-EGCG,LE)nanoparticle(Met–GOx/Fe@LE NPs)was constructed.The coordination between iron ions(Fe3+)and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction.Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability.Moreover,this pH-responsive nanoplatform presents controllable drug release behavior.An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug.The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation.This triple-combination therapy approach is promising for efficient and targeted cancer treatment.展开更多
To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical app...To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical application. The activities of phosphatase, glutathione S-transferase (GSTs), cytochrome P450 (P450), and polyphenol oxidase (PPO) of tested insects were determined in all poisoning stages, including exciting stage, convulsing stage, paralysis stage, and recover stage. The result showed that the activities of both acid phosphatase (ACP) and alkaline phosphatase (AKP) in treated insects were induced by terpinen-4-ol, but ACP was inhibited in paralysis stage. The activities of GSTs were inhibited in exciting stage, convulsing stage, and paralysis stage, but gradually recovered in recover stage. O-demethylase activity of cytochrome P450 was inhibited by terpinen-4-ol, and the inhibition rate in all poisoning stages were 26.27, 46.03, 80.24, and 90.22%, respectively. PPO activities were strongly inhibited by terpinen-4-ol both in vitro and in vivo. In conclusion, the activities of P450, GSTs, and PPO could have relation with toxicity of terpinen-4-ol against larvae of the Mythimna separta, but recover stage of the poisoning insects might be related to GSTs induced. As a new insecticide or synergist, terpinen- 4-ol has a potential value in field of insecticide resistance management.展开更多
Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is ...Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid(UA) generation inhibitor in the 1950 s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target forvascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted.展开更多
Many of monoterpenes produced in plants contribute to defenses against herbivores, insects and microorganisms. Among those compounds, β-thujaplicin formed in Cupressaceae plants has a unique conjugated seven-membered...Many of monoterpenes produced in plants contribute to defenses against herbivores, insects and microorganisms. Among those compounds, β-thujaplicin formed in Cupressaceae plants has a unique conjugated seven-membered ring and some useful biological activities, e.g. fungicide, repellent, insecticide and so on. The biosynthesis pathway of β-thujaplicin has not yet been revealed;we have been trying to uncover it using Cupressus lusitanica cultured cells as a model. In our previous study, terpinolene was identified as a potential β-thujaplicin intermediate at the branching point to terpenoids. In this article, terpinolene metabolism in C. lusitanica cultured cells was investigated, and it was shown that the microsomal fraction from cells oxidized terpinolene into the hydroxylated compound, 5-isopropylidene-2-met-hylcyclohex-2-enol (IME). Then, IME was further oxidized by microsomal fraction to the epoxidized compound, 1,6-epoxy-4(8)-p-menthen-2-ol (EMO). These were the only two products detected from the microsomal reactions, respecttively. Moreover, microsomal reactions with monoterpenes other than terpinolene produced nothing detectable. These results show that the enzymes of these reactions had strict substrate specificity and regio-selectivity. Experiments on kinetics and with specific inhibitors confirmed that these reactions were caused by cytochrome P450 monooxygenases, respectively. These results support our hypothesis that terpinolene is a putative intermediate of β-thujaplicin biosynthesis and show that IME and EMO are also putative intermediates.展开更多
The role of lignifications and enzymes involved in the phenylpropanoid (PP) biosynthesis i.e. phenylalanine ammonia lyase (PAL), Peroxidase (POD), Polyphenol oxidase (PPO) in providing resistance to Karnal Bunt (KB) d...The role of lignifications and enzymes involved in the phenylpropanoid (PP) biosynthesis i.e. phenylalanine ammonia lyase (PAL), Peroxidase (POD), Polyphenol oxidase (PPO) in providing resistance to Karnal Bunt (KB) during different developmental stages of resistant (HD-29) and susceptible genotype (WH-542) and its recombinant inbred lines (RILs) of wheat were investigated. The enzymes of PP pathway were expressed constitutively in both the susceptible and resistant genotype. However, the activity was higher in all the developmental stages of resistant genotype and its RILs, indicating that this genotype has a significant higher basal level of these enzymes as compared to the susceptible line and could be used as marker(s) to define KB resistance. The activity of PAL and POD was significantly higher in WSv stage (Z = 16) while the specific activity of PPO was higher in WS3 (Z = 77) stage as compared to the other physiological stages in both the genotypes. In resistant genotype the lignin content increased two-fold and three-fold at WS2 and WS3 stage, respectively, while in susceptible genotype no significant increase in lignin content was observed. The pathway might be associated with the enhancement of structural defense barrier due to lignifications of cell wall as evident from the enhanced synthesis of lignin in all the stages of resistant genotype. Our results clearly indicate the possible role of enzymes of PP metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB.展开更多
Acute pancreatitis(AP)is a potentially fatal condition with no targeted treatment options.Although inhibiting xanthine oxidase(XO)in the treatment of AP has been studied in several experimental models and clinical tri...Acute pancreatitis(AP)is a potentially fatal condition with no targeted treatment options.Although inhibiting xanthine oxidase(XO)in the treatment of AP has been studied in several experimental models and clinical trials,whether XO is a target of AP and what its the main mechanism of action is remains unclear.Here,we aimed to re-evaluate whether XO is a target aggravating AP other than merely generating reactive oxygen species that trigger AP.We first revealed that XO expression and enzyme activity were significantly elevated in the serum and pancreas of necrotizing AP models.We also found that allopurinol and febuxostat,as purine-like and non-purine XO inhibitors,respectively,exhibited protective effects against pancreatic acinar cell death in vitro and pancreatic damage in vivo at different doses and treatment time points.Moreover,we observed that conditional Xdh overexpression aggravated pancreatic necrosis and severity.Further mechanism analysis showed that XO inhibition restored the hypoxia-inducible factor 1-alpha(HIF-1α)-regulated lactate dehydrogenase A(LDHA)and NOD-like receptor family pyrin domain containing 3(NLRP3)signaling pathways and reduced the enrichment of^(13)C_(6)-glucose to^(13)C_(3)-lactate.Lastly,we observed that clinical circulatory XO activity was significantly elevated in severe cases and correlated with C-reactive protein levels,while pancreatic XO and urate were also increased in severe AP patients.These results together indicated that proper inhibition of XO might be a promising therapeutic strategy for alleviating pancreatic necrosis and preventing progression of severe AP by downregulating HIF-1α-mediated LDHA and NLRP3 signaling pathways.展开更多
BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.A...BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.AIM To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)in promoting progression of CRC.METHODS We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.Consensus clustering was used to cluster CRC based on dysregulated metabolic genes.A prediction model was constructed based on survival-related metabolic genes.Sphere formation,migration,invasion,proliferation,apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC.mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells.In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth.RESULTS We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes.Among these genes,NOX4 was highly expressed in tumor tissues and correlated with worse survival.In vitro,NOX4 overexpression induced clone formation,migration,invasion,and stemness in CRC cells.Furthermore,RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway.Trametinib,a MEK1/2 inhibitor,abolished the NOX4-mediated tumor progression.In vivo,NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis,whereas trametinib treatment can reversed the metastasis.CONCLUSION Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis,suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.展开更多
Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we te...Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we tested the hypothesis that a small passerine,the Red-billed Leiothrix(Leiothrix lutea),can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.Methods:Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs(Leiothrix lutea)was investigated under warm(35℃),normal(25℃)or cold(15℃)ambient temperature conditions.Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome-c oxidase(COX)activity in liver,kidney heart and pectoral muscle were measured with a Clark electrode.Results:Birds acclimated to an ambient temperature of 15℃ for 4 weeks significantly increased their basal metabolic rate(BMR)compared to a control group kept at 25℃.Birds acclimated to 35℃ decreased their BMR,gross energy intake(GEI)and digestible energy intake(DEI).Furthermore,birds acclimated to 15℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase(COX)activity in their liver and pectoral muscle,compared to the 25℃ control group.Birds acclimated to 35℃ also displayed lower state-4 respiration and COX activity in the liver,heart and pectoral muscles,compared to those kept at 25℃.There was a positive correlation between BMR and state-4 respiration,and between BMR and COX activity,in all of the above organs except the liver and heart.Conclusions:Our study illustrates that the morphological,physiological,and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix,and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.展开更多
Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy c...Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms.BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear.In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines:wild Bramblings(Fringilla montifringilla),Little Buntings(Emberiza pusilla) and Eurasian Tree Sparrows(Passer montanus),caught in Wenzhou,southeastern China.Methods:Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome c oxidase(COX) activity in liver and pectoral muscle were measured with a Clark electrode.Results:Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings.Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.Conclusions:Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.展开更多
基金the National Natural Science Foundation of China(Grant Nos.:82102767 and 82002655)the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project,West China Hospital,Sichuan University,China(Grant No.:2020HXFH036)+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences,China(Grant No.:JH2022007)the Cultivation Project of Basic Medical College of Xinxiang Medical University,China(Grant No.:JCYXYKY202112)the Key Project of Science and Technology of Henan Province,China(Grant No.:222102310260).
文摘Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvation induced by glucose oxidase(GOx),after their efficient delivery to tumor sites,GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ.Herein,a pH-responsive epigallocatechin gallate(EGCG)-conjugated low-molecular-weight chitosan(LC-EGCG,LE)nanoparticle(Met–GOx/Fe@LE NPs)was constructed.The coordination between iron ions(Fe3+)and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction.Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability.Moreover,this pH-responsive nanoplatform presents controllable drug release behavior.An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug.The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation.This triple-combination therapy approach is promising for efficient and targeted cancer treatment.
基金supported by the National Natural Science Foundation of China(30600404)the Key Technologies R&D Program of China during the 10th Five-Year Plan Period(2004BA516A04).
文摘To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical application. The activities of phosphatase, glutathione S-transferase (GSTs), cytochrome P450 (P450), and polyphenol oxidase (PPO) of tested insects were determined in all poisoning stages, including exciting stage, convulsing stage, paralysis stage, and recover stage. The result showed that the activities of both acid phosphatase (ACP) and alkaline phosphatase (AKP) in treated insects were induced by terpinen-4-ol, but ACP was inhibited in paralysis stage. The activities of GSTs were inhibited in exciting stage, convulsing stage, and paralysis stage, but gradually recovered in recover stage. O-demethylase activity of cytochrome P450 was inhibited by terpinen-4-ol, and the inhibition rate in all poisoning stages were 26.27, 46.03, 80.24, and 90.22%, respectively. PPO activities were strongly inhibited by terpinen-4-ol both in vitro and in vivo. In conclusion, the activities of P450, GSTs, and PPO could have relation with toxicity of terpinen-4-ol against larvae of the Mythimna separta, but recover stage of the poisoning insects might be related to GSTs induced. As a new insecticide or synergist, terpinen- 4-ol has a potential value in field of insecticide resistance management.
文摘Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid(UA) generation inhibitor in the 1950 s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target forvascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted.
文摘Many of monoterpenes produced in plants contribute to defenses against herbivores, insects and microorganisms. Among those compounds, β-thujaplicin formed in Cupressaceae plants has a unique conjugated seven-membered ring and some useful biological activities, e.g. fungicide, repellent, insecticide and so on. The biosynthesis pathway of β-thujaplicin has not yet been revealed;we have been trying to uncover it using Cupressus lusitanica cultured cells as a model. In our previous study, terpinolene was identified as a potential β-thujaplicin intermediate at the branching point to terpenoids. In this article, terpinolene metabolism in C. lusitanica cultured cells was investigated, and it was shown that the microsomal fraction from cells oxidized terpinolene into the hydroxylated compound, 5-isopropylidene-2-met-hylcyclohex-2-enol (IME). Then, IME was further oxidized by microsomal fraction to the epoxidized compound, 1,6-epoxy-4(8)-p-menthen-2-ol (EMO). These were the only two products detected from the microsomal reactions, respecttively. Moreover, microsomal reactions with monoterpenes other than terpinolene produced nothing detectable. These results show that the enzymes of these reactions had strict substrate specificity and regio-selectivity. Experiments on kinetics and with specific inhibitors confirmed that these reactions were caused by cytochrome P450 monooxygenases, respectively. These results support our hypothesis that terpinolene is a putative intermediate of β-thujaplicin biosynthesis and show that IME and EMO are also putative intermediates.
文摘The role of lignifications and enzymes involved in the phenylpropanoid (PP) biosynthesis i.e. phenylalanine ammonia lyase (PAL), Peroxidase (POD), Polyphenol oxidase (PPO) in providing resistance to Karnal Bunt (KB) during different developmental stages of resistant (HD-29) and susceptible genotype (WH-542) and its recombinant inbred lines (RILs) of wheat were investigated. The enzymes of PP pathway were expressed constitutively in both the susceptible and resistant genotype. However, the activity was higher in all the developmental stages of resistant genotype and its RILs, indicating that this genotype has a significant higher basal level of these enzymes as compared to the susceptible line and could be used as marker(s) to define KB resistance. The activity of PAL and POD was significantly higher in WSv stage (Z = 16) while the specific activity of PPO was higher in WS3 (Z = 77) stage as compared to the other physiological stages in both the genotypes. In resistant genotype the lignin content increased two-fold and three-fold at WS2 and WS3 stage, respectively, while in susceptible genotype no significant increase in lignin content was observed. The pathway might be associated with the enhancement of structural defense barrier due to lignifications of cell wall as evident from the enhanced synthesis of lignin in all the stages of resistant genotype. Our results clearly indicate the possible role of enzymes of PP metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB.
基金supported by the National Natural Science Foundation of China(Dan Du,82170905)the Program of Science and Technology Department of Sichuan Province(Dan Du,2023NSFSC1755,China)+2 种基金the State Key Laboratory of Bioactive Substance and Function of Natural Medicines,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College(Dan Du,GTZK202107,China)the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Qing Xia,ZYJC18005,China)the West China,Nursing Discipline Development Special Fund Project,Sichuan University(Xia Li,HXHL21060,China).
文摘Acute pancreatitis(AP)is a potentially fatal condition with no targeted treatment options.Although inhibiting xanthine oxidase(XO)in the treatment of AP has been studied in several experimental models and clinical trials,whether XO is a target of AP and what its the main mechanism of action is remains unclear.Here,we aimed to re-evaluate whether XO is a target aggravating AP other than merely generating reactive oxygen species that trigger AP.We first revealed that XO expression and enzyme activity were significantly elevated in the serum and pancreas of necrotizing AP models.We also found that allopurinol and febuxostat,as purine-like and non-purine XO inhibitors,respectively,exhibited protective effects against pancreatic acinar cell death in vitro and pancreatic damage in vivo at different doses and treatment time points.Moreover,we observed that conditional Xdh overexpression aggravated pancreatic necrosis and severity.Further mechanism analysis showed that XO inhibition restored the hypoxia-inducible factor 1-alpha(HIF-1α)-regulated lactate dehydrogenase A(LDHA)and NOD-like receptor family pyrin domain containing 3(NLRP3)signaling pathways and reduced the enrichment of^(13)C_(6)-glucose to^(13)C_(3)-lactate.Lastly,we observed that clinical circulatory XO activity was significantly elevated in severe cases and correlated with C-reactive protein levels,while pancreatic XO and urate were also increased in severe AP patients.These results together indicated that proper inhibition of XO might be a promising therapeutic strategy for alleviating pancreatic necrosis and preventing progression of severe AP by downregulating HIF-1α-mediated LDHA and NLRP3 signaling pathways.
基金Supported by Henan Province Medical Science and Technology Research Provincial and Ministry Co-constructed Projects,No.SBGJ202101010Major Public Welfare Projects in Henan Province,No.201300310400+1 种基金Joint Construction Project of Henan Medical Science and Technology Research Plan,No.LHGJ20220050Major Science and Technology Project of Henan Province,No.221100310100.
文摘BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.AIM To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)in promoting progression of CRC.METHODS We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.Consensus clustering was used to cluster CRC based on dysregulated metabolic genes.A prediction model was constructed based on survival-related metabolic genes.Sphere formation,migration,invasion,proliferation,apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC.mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells.In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth.RESULTS We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes.Among these genes,NOX4 was highly expressed in tumor tissues and correlated with worse survival.In vitro,NOX4 overexpression induced clone formation,migration,invasion,and stemness in CRC cells.Furthermore,RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway.Trametinib,a MEK1/2 inhibitor,abolished the NOX4-mediated tumor progression.In vivo,NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis,whereas trametinib treatment can reversed the metastasis.CONCLUSION Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis,suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.31470472 and 31971420)the National Undergraduate “Innovation” Projectthe “Xinmiao” Project in Zhejiang Province
文摘Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we tested the hypothesis that a small passerine,the Red-billed Leiothrix(Leiothrix lutea),can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.Methods:Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs(Leiothrix lutea)was investigated under warm(35℃),normal(25℃)or cold(15℃)ambient temperature conditions.Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome-c oxidase(COX)activity in liver,kidney heart and pectoral muscle were measured with a Clark electrode.Results:Birds acclimated to an ambient temperature of 15℃ for 4 weeks significantly increased their basal metabolic rate(BMR)compared to a control group kept at 25℃.Birds acclimated to 35℃ decreased their BMR,gross energy intake(GEI)and digestible energy intake(DEI).Furthermore,birds acclimated to 15℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase(COX)activity in their liver and pectoral muscle,compared to the 25℃ control group.Birds acclimated to 35℃ also displayed lower state-4 respiration and COX activity in the liver,heart and pectoral muscles,compared to those kept at 25℃.There was a positive correlation between BMR and state-4 respiration,and between BMR and COX activity,in all of the above organs except the liver and heart.Conclusions:Our study illustrates that the morphological,physiological,and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix,and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.
基金financially supported by Grants from the National Natural Science Foundation of China (No. 31470472)the National Undergraduate "Innovation" Project and Zhejiang Province’s "Xinmiao" Project
文摘Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms.BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear.In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines:wild Bramblings(Fringilla montifringilla),Little Buntings(Emberiza pusilla) and Eurasian Tree Sparrows(Passer montanus),caught in Wenzhou,southeastern China.Methods:Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome c oxidase(COX) activity in liver and pectoral muscle were measured with a Clark electrode.Results:Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings.Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.Conclusions:Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.
文摘目的 探究代谢相关脂肪性肝病(MAFLD)患者血清几丁质酶样蛋白40(YKL-40)、烟酰胺腺嘌呤二核苷酸磷酸氧化酶2(NOX2)表达水平,并分析其与肝纤维化的关系。方法 选取2020年4月至2021年12月于保定市人民医院就诊的108例MAFLD患者为MAFLD组,选取同期该院108例健康体检者为对照组。肝纤维化程度评估根据瞬时弹性成像技术所得肝脏硬度值分为非纤维化组(60例,肝脏硬度值<8.0 k Pa)和纤维化组(48例,肝脏硬度值≥8.0 k Pa)。比较研究对象YKL-40、NOX2及临床资料差异。logistic回归分析MAFLD患者发生肝纤维化的影响因素。受试者工作特征(ROC)曲线评价YKL-40、NOX2对肝纤维化的预测效能。结果 MAFLD组血清YKL-40、NOX2水平高于对照组,差异有统计学意义(P<0.05)。纤维化组YKL-40、NOX2水平高于非纤维化组,差异有统计学意义(P<0.05)。回归分析显示,年龄(OR=1.647,95%CI:1.053~2.575,P=0.029)、HOMA-IR(OR=1.758,95%CI:1.083~2.853,P=0.022)、YKL-40(OR=2.016,95%CI:1.237~3.284,P=0.004)、NOX2(OR=2.292,95%CI:1.388~3.786,P=0.001)是MAFLD患者发生肝纤维化的影响因素(P<0.05)。YKL-40、NOX2单独预测MAFLD患者肝纤维化的曲线下面积(AUC)分别为0.833、0.838,YKL-40联合NOX2预测MAFLD患者肝纤维化的AUC为0.922,优于单一指标(Z_(二者联合-YKL-40)=2.268,P=0.023、Z_(二者联合-NOX2)=1.999,P=0.046)。结论 YKL-40、NOX2在MAFLD患者血清中水平增加,且与肝纤维化相关,YKL-40联合NOX2可作为预测肝纤维化的生物标志物。