AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treat...AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed. METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients. RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45^+ cells in peripheral blood (PB) detected by flow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from flow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as confirmed by detecting human 132- microglobulin expression using immunohistochemistry. Tn this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specific differentiation into CK18-positive human cells in chimeric liver and CEHS-positive human cells in chimeric spleen and thymus of recipients. CONCLUSION: Taken together, these findings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising.展开更多
Compared with the widely used rodents,pigs are anatomically,physiologically,and genetically more similar to humans,making them high-quality models for the study of liver diseases.Here,we review the latest research pro...Compared with the widely used rodents,pigs are anatomically,physiologically,and genetically more similar to humans,making them high-quality models for the study of liver diseases.Here,we review the latest research progress on pigs as a model of human liver disease,including methods for establishing them and their advantages in studying cystic fibrosis liver disease,acute liver failure,liver regeneration,non-alcoholic fatty liver disease,liver tumors,and xenotransplantation.We also emphasize the importance of genetic engineering techniques,mainly the CRISPR/Cas9 system,which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research.Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.展开更多
基金Supported by The National Natural Science Foundation of China, No. 30271177 and No. 39870676 the National 9th Five-year Program, No. 101033+3 种基金 The Major Science and Technology Projects of Guangdong Province, No. B602 Natural Science Foundation of Guangdong Province, No. 021903 The Postdoctoral Fellowship Foundation of China (Series 29)The Special Fund of Scientifi c Instrument Collaborative Share-net in Guangzhou, No. 2006176
文摘AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed. METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients. RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45^+ cells in peripheral blood (PB) detected by flow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from flow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as confirmed by detecting human 132- microglobulin expression using immunohistochemistry. Tn this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specific differentiation into CK18-positive human cells in chimeric liver and CEHS-positive human cells in chimeric spleen and thymus of recipients. CONCLUSION: Taken together, these findings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising.
基金National Key Research and Development Program of China(No.2021YFA1100502,No.2021YFA1100504)Hangzhou West Lake Pearl Project of China,and the Hangzhou New Medical Talent Project of China.
文摘Compared with the widely used rodents,pigs are anatomically,physiologically,and genetically more similar to humans,making them high-quality models for the study of liver diseases.Here,we review the latest research progress on pigs as a model of human liver disease,including methods for establishing them and their advantages in studying cystic fibrosis liver disease,acute liver failure,liver regeneration,non-alcoholic fatty liver disease,liver tumors,and xenotransplantation.We also emphasize the importance of genetic engineering techniques,mainly the CRISPR/Cas9 system,which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research.Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.