This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour...This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour of the tractor along with the attached cultivator, the modified bicycle model was adopted. Steering angle sensor, fibre optic gyroscope (FOG) and RTK-DGPS technologies are assumed for measurements of the steering angle, yaw rate and the lateral position of the tractor, respectively. The kinematics model was used for the implement. In this study four cascade controllers were designed and simulated for tractor guidance which consists ofPD, PD, P and PID controllers. Other PI and PID controllers also had been designed for implement side shifting purpose. Then, these two systems were combined and the performance of the whole system was evaluated through the simulation results. According to the results tractor reaches the desired path after less than 10 seconds. Simulations showed that the maximum deviation of the tractor from the desired path was about 5 cm within this period. And the cultivator blades would follow the predetermined path with steady state error of about 5 cm too.展开更多
文摘This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour of the tractor along with the attached cultivator, the modified bicycle model was adopted. Steering angle sensor, fibre optic gyroscope (FOG) and RTK-DGPS technologies are assumed for measurements of the steering angle, yaw rate and the lateral position of the tractor, respectively. The kinematics model was used for the implement. In this study four cascade controllers were designed and simulated for tractor guidance which consists ofPD, PD, P and PID controllers. Other PI and PID controllers also had been designed for implement side shifting purpose. Then, these two systems were combined and the performance of the whole system was evaluated through the simulation results. According to the results tractor reaches the desired path after less than 10 seconds. Simulations showed that the maximum deviation of the tractor from the desired path was about 5 cm within this period. And the cultivator blades would follow the predetermined path with steady state error of about 5 cm too.