A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot...The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate.展开更多
Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena i...Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.展开更多
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder r...Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.展开更多
Driving simulators involve the capability of simulating critical and dangerous driving situations up to the limits of active safety. They are employed for investigating the interactions of the driver-vehicle system un...Driving simulators involve the capability of simulating critical and dangerous driving situations up to the limits of active safety. They are employed for investigating the interactions of the driver-vehicle system under reproducible and non-dangerous conditions. Because of their flexibility they are well established in scientific research. They are mainly used in current automotive fields of research like driver assistance and autonomous driving systems. The development of assistance systems makes the human being as the directly concerned component irreplaceable in the development process. Here the use of driving simulators has become an essential element, because they offer the possibility to integrate the human being as a real part into the simulation environment. It must be considered that the circuit of information has to be the same as under real driving conditions. Otherwise the results are not transferable. This paper deals with the possibilities of presenting all information to the driver, which are necessary to give him a realistic impression of driving. A main subject is the sensation of yaw-movements, which could be of interest when novel kinds of moving base systems are designed.展开更多
This study investigates how the debris cloud structure and hazardous fragment distribution vary with attack angle by simulating a circular cylinder projectile hypervelocity impinging on a thin plate using the finite e...This study investigates how the debris cloud structure and hazardous fragment distribution vary with attack angle by simulating a circular cylinder projectile hypervelocity impinging on a thin plate using the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method.Based on the comparison and analysis of the experimental and simulation results,the FE-SPH adaptive method was applied to address the hypervelocity yaw impact problem,and the variation law of the debris cloud structure with the attack angle was obtained.The screening criterion of the hazardous fragment at yaw impact is given by analyzing the debris formation obtained by the FE-SPH adaptive method,and the distribution characteristics of hazardous fragments and their relationship with the attack angle are given.Moreover,the velocity space was used to evaluate the distribution range and damage capability of asymmetric hazardous fragments.The maximum velocity angle was extended from fully symmetrical working conditions to asymmetrical cases to describe the asymmetrical debris cloud distribution range.In this range,the energy density was calculated to quantitatively analyze how much damage hazardous fragments inflict on the rear plate.The results showed that the number of hazardous fragments generated by the case near the 35°attack angle was the largest,the distribution range was the smallest,and the energy density was the largest.These results suggest that in this case,debris cloud generated by the impact had the strongest damage to the rear plate.展开更多
This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-enc...This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-encoderconvolutional neural network(ACNN)trained to extract the features of turbine wakes using instantaneous datafrom large-eddy simulation(LES).The proposed framework is demonstrated by applying it to the Sandia NationalLaboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines.LES of this site is performedfor different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN.It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angleand wind speed that were not part of the training process.Specifically,the ACNN is shown to reproduce thewake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately.Compared to the brute-force LES,the ACNN developed herein is shown to reduce the overall computational costrequired to obtain the steady state first and second-order statistics of the wind farm by about 85%.展开更多
An experimental study of the flow in a helicopter inlet with front output shaft and partial flow dynamic head is conducted in low speed wind tunnel. The flow characters of the inlet in the range of the yaw angle from ...An experimental study of the flow in a helicopter inlet with front output shaft and partial flow dynamic head is conducted in low speed wind tunnel. The flow characters of the inlet in the range of the yaw angle from 0~135°are presented in this paper. The static pressure distributions along the duct, distortions of the flow field at the outlet section and total pressure recovery coefficients are measured and analyzed. The results show that this type of inlet has high total pressure recovery coefficients at a wide range of yaw angle. The regions of local flow separation and distortion are closely related to the yaw angle. It′s also found that the outlet section has the best characteristics at sideslip, and sharply deteriorated characteristics at the yawed flight with a yaw angle of more than 90°展开更多
The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the ...The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.展开更多
Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(...Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.展开更多
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics ...Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions.展开更多
A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and ...A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction.展开更多
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the...Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.展开更多
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha...A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.展开更多
Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. Th...Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.展开更多
This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour...This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour of the tractor along with the attached cultivator, the modified bicycle model was adopted. Steering angle sensor, fibre optic gyroscope (FOG) and RTK-DGPS technologies are assumed for measurements of the steering angle, yaw rate and the lateral position of the tractor, respectively. The kinematics model was used for the implement. In this study four cascade controllers were designed and simulated for tractor guidance which consists ofPD, PD, P and PID controllers. Other PI and PID controllers also had been designed for implement side shifting purpose. Then, these two systems were combined and the performance of the whole system was evaluated through the simulation results. According to the results tractor reaches the desired path after less than 10 seconds. Simulations showed that the maximum deviation of the tractor from the desired path was about 5 cm within this period. And the cultivator blades would follow the predetermined path with steady state error of about 5 cm too.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
The effects of different yaw angles on the aerodynamic performance of city electric multiple units(EMUs)were investigated in a wind tunnel using a 1:16.8 scaled model.Pressure scanning valve and six-component box-type...The effects of different yaw angles on the aerodynamic performance of city electric multiple units(EMUs)were investigated in a wind tunnel using a 1:16.8 scaled model.Pressure scanning valve and six-component box-type aerodynamic balance were used to test the pressure distribution and aerodynamic force of the head car respectively from the 1.5-and 3-coach grouping city EMU models.Meanwhile,the effects of the yaw angles on the pressure distribution of the streamlined head as well as the aerodynamic forces of the train were analyzed.The experimental results showed that the pressure coefficient was the smallest at the maximum slope of the main shape-line.The side force coefficient and pressure coefficient along the head car cross-section were most affected by crosswind when the yaw angle was 55°,and replacing a 3-coach grouping with a 1.5-coach grouping had obvious advantages for wind tunnel testing when the yaw angle was within 24.2°.In addition,the relative errors of lift coefficient C_(L),roll moment coefficient C_(Mx),side force coefficient C_(S),and drag coefficient C_(D) between the 1.5-and 3-coach cases were below 5.95%,which all met the requirements of the experimental accuracy.展开更多
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.12221002)。
文摘The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate.
基金supported by the National Natural Science Foundation of China(51866012)the Major Project of the Natural Science Foundation of Inner Mongolia Autonomous Region(2018ZD08)the Fundamental Research Funds for the Central Universities of Inner Mongolia Autonomous Region(JY20220037).
文摘Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 61174047) and the Fundamental Research Funds for the Central Universities (HEUCF041406).
文摘Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.
文摘Driving simulators involve the capability of simulating critical and dangerous driving situations up to the limits of active safety. They are employed for investigating the interactions of the driver-vehicle system under reproducible and non-dangerous conditions. Because of their flexibility they are well established in scientific research. They are mainly used in current automotive fields of research like driver assistance and autonomous driving systems. The development of assistance systems makes the human being as the directly concerned component irreplaceable in the development process. Here the use of driving simulators has become an essential element, because they offer the possibility to integrate the human being as a real part into the simulation environment. It must be considered that the circuit of information has to be the same as under real driving conditions. Otherwise the results are not transferable. This paper deals with the possibilities of presenting all information to the driver, which are necessary to give him a realistic impression of driving. A main subject is the sensation of yaw-movements, which could be of interest when novel kinds of moving base systems are designed.
基金supported by the National Natural Science Foundation of China(Grant No.11872118,11627901)。
文摘This study investigates how the debris cloud structure and hazardous fragment distribution vary with attack angle by simulating a circular cylinder projectile hypervelocity impinging on a thin plate using the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method.Based on the comparison and analysis of the experimental and simulation results,the FE-SPH adaptive method was applied to address the hypervelocity yaw impact problem,and the variation law of the debris cloud structure with the attack angle was obtained.The screening criterion of the hazardous fragment at yaw impact is given by analyzing the debris formation obtained by the FE-SPH adaptive method,and the distribution characteristics of hazardous fragments and their relationship with the attack angle are given.Moreover,the velocity space was used to evaluate the distribution range and damage capability of asymmetric hazardous fragments.The maximum velocity angle was extended from fully symmetrical working conditions to asymmetrical cases to describe the asymmetrical debris cloud distribution range.In this range,the energy density was calculated to quantitatively analyze how much damage hazardous fragments inflict on the rear plate.The results showed that the number of hazardous fragments generated by the case near the 35°attack angle was the largest,the distribution range was the smallest,and the energy density was the largest.These results suggest that in this case,debris cloud generated by the impact had the strongest damage to the rear plate.
基金supported by the National Offshore Wind Research and Development Consortium (NOWRDC) under agreement number 147503a grant from the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Water Power Technologies Office (WPTO) Award Number DE-EE0009450
文摘This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-encoderconvolutional neural network(ACNN)trained to extract the features of turbine wakes using instantaneous datafrom large-eddy simulation(LES).The proposed framework is demonstrated by applying it to the Sandia NationalLaboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines.LES of this site is performedfor different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN.It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angleand wind speed that were not part of the training process.Specifically,the ACNN is shown to reproduce thewake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately.Compared to the brute-force LES,the ACNN developed herein is shown to reduce the overall computational costrequired to obtain the steady state first and second-order statistics of the wind farm by about 85%.
文摘An experimental study of the flow in a helicopter inlet with front output shaft and partial flow dynamic head is conducted in low speed wind tunnel. The flow characters of the inlet in the range of the yaw angle from 0~135°are presented in this paper. The static pressure distributions along the duct, distortions of the flow field at the outlet section and total pressure recovery coefficients are measured and analyzed. The results show that this type of inlet has high total pressure recovery coefficients at a wide range of yaw angle. The regions of local flow separation and distortion are closely related to the yaw angle. It′s also found that the outlet section has the best characteristics at sideslip, and sharply deteriorated characteristics at the yawed flight with a yaw angle of more than 90°
基金Supported by National Natural Science Foundation of China(Grant Nos.51575103,11672127,U1664258)Fundamental Research Funds for the Central Universities of China(Grant No.NT2018002)+1 种基金China Postdoctoral Science Foundation(Grant Nos.2017T100365,2016M601799)the Fundation of Graduate Innovation Center in NUAA(Grant No.k j20180207)
文摘The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.
基金supported by National Natural Science Foundation of China (Grant No. 50575120)Ministry of Science and Technology of China (Grant No. 20071850519)
文摘Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.
文摘Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479135 and 51679167)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621092)
文摘A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072161,U20A20331)China Postdoctoral Science Foundation(Grant No.2019T120398)+2 种基金State Key Laboratory of Automotive Safety and Energy of China(Grant No.KF2016)Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province(Grant No.QCCK2019-002)Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC 001).
文摘Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.
基金supported by a Major Programme of the National Science and Technology Support,China Grant(2013BAG24B00),under the project“Key technologies and engineering application demonstration of High-speed train for energy saving”.
文摘A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.
文摘Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.
文摘This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour of the tractor along with the attached cultivator, the modified bicycle model was adopted. Steering angle sensor, fibre optic gyroscope (FOG) and RTK-DGPS technologies are assumed for measurements of the steering angle, yaw rate and the lateral position of the tractor, respectively. The kinematics model was used for the implement. In this study four cascade controllers were designed and simulated for tractor guidance which consists ofPD, PD, P and PID controllers. Other PI and PID controllers also had been designed for implement side shifting purpose. Then, these two systems were combined and the performance of the whole system was evaluated through the simulation results. According to the results tractor reaches the desired path after less than 10 seconds. Simulations showed that the maximum deviation of the tractor from the desired path was about 5 cm within this period. And the cultivator blades would follow the predetermined path with steady state error of about 5 cm too.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金Project(2020YFA0710903) supported by the National Key R&D Program of ChinaProjects(2020zzts111, 2020zzts117)supported by the Graduate Student Independent Innovation Project of Central South University,ChinaProject(202037)supported by Transport Department of Hunan Province Technology Innovation Project,China。
文摘The effects of different yaw angles on the aerodynamic performance of city electric multiple units(EMUs)were investigated in a wind tunnel using a 1:16.8 scaled model.Pressure scanning valve and six-component box-type aerodynamic balance were used to test the pressure distribution and aerodynamic force of the head car respectively from the 1.5-and 3-coach grouping city EMU models.Meanwhile,the effects of the yaw angles on the pressure distribution of the streamlined head as well as the aerodynamic forces of the train were analyzed.The experimental results showed that the pressure coefficient was the smallest at the maximum slope of the main shape-line.The side force coefficient and pressure coefficient along the head car cross-section were most affected by crosswind when the yaw angle was 55°,and replacing a 3-coach grouping with a 1.5-coach grouping had obvious advantages for wind tunnel testing when the yaw angle was within 24.2°.In addition,the relative errors of lift coefficient C_(L),roll moment coefficient C_(Mx),side force coefficient C_(S),and drag coefficient C_(D) between the 1.5-and 3-coach cases were below 5.95%,which all met the requirements of the experimental accuracy.