Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
In order to flower in the appropriate season,plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis(Arabidopsis thaliana)FLOWERING LOCUS T(FT).In Ar...In order to flower in the appropriate season,plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis(Arabidopsis thaliana)FLOWERING LOCUS T(FT).In Arabidopsis,FT messenger RNA levels peak in the morning and evening under natural long-day conditions(LDs).However,the regulatory mechanisms governing morning FT induction remain poorly understood.The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light(R:FR)ratios and constant temperatures.Here,we demonstrate that ZEITLUPE(ZTL)interacts with the FT repressors TARGET OF EATs(TOEs),thereby repressing morning FT expression in natural environments.Under LDs with simulated sunlight(R:FR=1.0)and daily temperature cycles,which are natural LD-mimicking environmental conditions,FT transcript levels in the ztl mutant were high specifically in the morning,a pattern that was mirrored in the toe1 toe2 double mutant.Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning.Far-red light counteracted ZTL activity by decreasing its abundance(possibly via phytochrome A(phyA))while increasing GIGANTEA(GI)levels and negatively affecting the formation of the ZTL-GI complex in the morning.Therefore,the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction.Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.展开更多
Here we derive Newton’s and Einstein’s gravitational results for any mass less than or equal to a Planck mass. All of the new formulas presented in this paper give the same numerical output as the traditional formul...Here we derive Newton’s and Einstein’s gravitational results for any mass less than or equal to a Planck mass. All of the new formulas presented in this paper give the same numerical output as the traditional formulas. However, they have been rewritten in a way that gives a new perspective on the formulas when working with gravity at the level of the subatomic world. To rewrite the well-known formulas in this way could make it easier to understand the strengths and weaknesses in Newton’s and Einstein’s gravitation formulas at the subatomic scale, potentially opening them up for new important interpretations and extensions. For example, we suggest that the speed of gravity equal to that of light is actually embedded and hidden inside of Newton’s gravitational formula.展开更多
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI grant(No.19K16170 and No.23K05817 to A.K.)National Institutes of Health(NIH)(No.R01GM079712 to T.I.)the National Research Foundation(NRF)of Korea grant funded by the Korean Government(MSIT)(No.NRF-2020R1A2C1014655 andNo.NRF-2021R1A4A1032888 to Y.H.S.).
文摘In order to flower in the appropriate season,plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis(Arabidopsis thaliana)FLOWERING LOCUS T(FT).In Arabidopsis,FT messenger RNA levels peak in the morning and evening under natural long-day conditions(LDs).However,the regulatory mechanisms governing morning FT induction remain poorly understood.The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light(R:FR)ratios and constant temperatures.Here,we demonstrate that ZEITLUPE(ZTL)interacts with the FT repressors TARGET OF EATs(TOEs),thereby repressing morning FT expression in natural environments.Under LDs with simulated sunlight(R:FR=1.0)and daily temperature cycles,which are natural LD-mimicking environmental conditions,FT transcript levels in the ztl mutant were high specifically in the morning,a pattern that was mirrored in the toe1 toe2 double mutant.Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning.Far-red light counteracted ZTL activity by decreasing its abundance(possibly via phytochrome A(phyA))while increasing GIGANTEA(GI)levels and negatively affecting the formation of the ZTL-GI complex in the morning.Therefore,the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction.Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.
文摘Here we derive Newton’s and Einstein’s gravitational results for any mass less than or equal to a Planck mass. All of the new formulas presented in this paper give the same numerical output as the traditional formulas. However, they have been rewritten in a way that gives a new perspective on the formulas when working with gravity at the level of the subatomic world. To rewrite the well-known formulas in this way could make it easier to understand the strengths and weaknesses in Newton’s and Einstein’s gravitation formulas at the subatomic scale, potentially opening them up for new important interpretations and extensions. For example, we suggest that the speed of gravity equal to that of light is actually embedded and hidden inside of Newton’s gravitational formula.
文摘目的:探讨荆防方加减联合红黄光及重组牛碱性成纤维细胞生长因子(rb-bFGF)凝胶治疗面部糖皮质激素依赖性皮炎(Facial corticosteroid addictive dermatitis,FCAD)的效果。方法:根据治疗方法不同将2022年2月-2023年8月笔者医院的90例FCAD患者分为对照组和观察组,各45例。对照组使用红黄光照射治疗,观察组同时使用荆防方治疗。对比两组的临床疗效、症状评分、皮肤屏障功能、血清炎症因子水平、不良反应。结果:观察组的有效率(91.11%)高于对照组(73.33%)(P<0.05),观察组治疗后潮红、瘙痒、干燥脱屑、灼热疼痛的症状评分均低于对照组(P<0.05),观察组治疗后的皮脂含量、皮肤角质层含水量(Cuticle water conten,WCSC)高于对照组,经皮肤水分流失量(Transcutaneous water loss,TEWL)低于对照组(P<0.05),观察组治疗后的干扰素-γ(INF-γ)、免疫球蛋白-E(IgE)、白细胞介素-4(IL-4)水平均低于对照组(P<0.05),两组不良反应比较,差异无统计学意义(P>0.05)。结论:荆防方加减联合红黄光及rb-bFGF凝胶治疗FCAD的效果显著,能够减轻患者的症状,提高皮肤屏障功能,改善炎症状态。