A modified lower trophic ecosystem model (NEMURO) is coupled with a three-dimensional hydrodynamic model for anapplication in the central Yellow Sea. The model is used to simulate the horizontal distributions and an...A modified lower trophic ecosystem model (NEMURO) is coupled with a three-dimensional hydrodynamic model for anapplication in the central Yellow Sea. The model is used to simulate the horizontal distributions and annual cycles of chlorophyll-aand nutrients with results consistent with historical observations. Generally, during the winter background and spring bloom periods,the exchange with neighboring waters constitutes the primary sources of nutrients. Howerver, during the winter background period,the input of silicate from the layer deeper than 50 m is the most important source that contributes up to 60% to the total sources. Dur-ing the spring bloom period, the transport across the thermocline makes significant contribution to the input of phosphate and silicate.During the post spring bloom period, the relative contribution of relevant processes varies for different nutrients. For ammonium,atmospheric deposition, excretion of zooplankton and decomposition of particulate and dissolved nitrogen make similar contributionsFor phosphate and silicate, the dominant input is the transport across the thermocline, accounting for 62% and 68% of the totalsources, respectively. The N/P ratio averaged annually and over the whole southern Yellow Sea is up to 51.8, indicating the potentialof P limitation in this region. The important influence of large scale sea water circulation is revealed by both the estimated fluxes andthe corresponding N/P ratio of nutrients across a section linking the northeastern bank of the Changjiang River and Cheju Island.During the winter background period, the input of nitrate, ammonium, phosphate and silicate by the Yellow Sea Warm Current isestimated to be 4.6~ 101~, 2.3x 101~, 2.0x 109 and 1.2x 101~ mol, respectively.展开更多
Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values, concentrations of heavy met...Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values, concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4+, NO3-, PO43-, SiO32-) were performed. Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2–3 times higher than that in the southern Yellow Sea. In individual, Pb and PO43- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.展开更多
Episodic deposition has been recognized as a major factor affecting the decomposition rate of detrital material in salt marshes. In this paper, three one-off burial treatments, no burial treatment(0 cm, NBT), current ...Episodic deposition has been recognized as a major factor affecting the decomposition rate of detrital material in salt marshes. In this paper, three one-off burial treatments, no burial treatment(0 cm, NBT), current burial treatment(10 cm, CBT) and strong burial treatment(20 cm, SBT), were designed in intertidal zone of the Yellow River Estuary to determine the potential influences of episodic deposition on nutrient(C, N) and heavy metal(Pb, Cr, Cu, Zn, Ni, Mn, Cd, V and Co) variations in decomposing litters of Suaeda glauca. Results showed that although various burial treatments showed no statistical difference in decomposition rate of S. glauca, the values generally followed the sequence of CBT(0.002 403/d) > SBT(0.002 195/d) > NBT(0.002 060/d). The nutrients and heavy metals in decomposing litters of the three burial treatments exhibited different variations except for N, Cu, Cr, Ni and Co. Except for Mn, no significant differences in C, N, Pb, Cr, Cu, Zn, Ni, V and Co concentrations occurred among the three treatments(P > 0.05). With increasing burial depth, Cr and Cd levels generally increased while Cu, Ni and Mn concentrations decreased. Although episodic deposition was generally favorable for C and N release from S. glauca, its influence on release was insignificant. In the three burial treatments, Pb, Cr, Zn, Ni, Mn, V and Co stocks in S. glauca generally evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. The S. glauca were particular efficient in binding Cd and releasing Pb, Cr, Zn, Ni, Mn, V and Co, and, with increasing burial depth, stocks of Cu in decomposing litters generally shifted from release to accumulation. The experiment indicated that the potential eco-toxic risk of Pb, Cr, Zn, Ni, Mn, V and Co exposure would be serious as the strong burial episodes occurred in S. glauca marsh.展开更多
Finger millet (FM) is rich in nutrients such as minerals, vitamins, and amino acids. However, the levels of nutrients and their bioaccessibility depend on the variety, the levels of ant nutrients, the chemical form of...Finger millet (FM) is rich in nutrients such as minerals, vitamins, and amino acids. However, the levels of nutrients and their bioaccessibility depend on the variety, the levels of ant nutrients, the chemical form of nutrients, and the type of processing methods used. The study determined the levels of selected nutrients, anti-nutrients, and bioaccessibility in raw and processed varieties of finger millet being developed by the Kenya Agricultural and Livestock Research Organization (KALRO) in Kenya. Raw finger millet seeds from KALRO Centers in Kenya were processed by malting for 60 hours and roasting at 110°C for 5 minutes as the optimal conditions. Levels of minerals were determined by AAS and AES, anti-nutrients by UV-visible spectrophotometer, proteins by the Pierce kit method, and vitamins by HPLC. The IE4115 and IE3779 showed the highest levels of nutrients and lowest levels of antinutrients hence preferred for processing and bioaccessibility studies. The level (mg/100 g) of selected minerals;K, Cr<sup>3+</sup>, Mg, Ca, P, Fe, and Zn were found to be highest in the following varieties of the FM;IE3779 (688.519 ± 1.57), IE 4115 (1.29 ± 0.07), IE4115 (294.38 ± 1.93), IE3779 (466.67 ± 4.17), IE4115 (250.92 ± 0.33), KERICHO P (16.98 ± 0.05) and IE4115 (64.10 ± 2.35) respectively. For β-carotene, vitamin B, B2, B3, B6 and B9 the levels were highest in the following varieties of FM;KAKW3 (0.023 ± 0.02), IE4115 (14.85 ± 0.16), IE4115 (12.998 ± 0.04), IE4115 (5.843 ± 0.07), IE3779 (0.06 ± 0.04) and KAKW4 (9.832 ± 0.08). Phytates, tannins, phenols, and oxalates were found to be lowest in the following varieties: IE3779 (14.20 ± 2.90, IE4115 (27.83 ± 0.73), NKFM1 (9.69 ± 0.07) and IE4115 (0.25 ± 0.01). The highest bioaccessibility values reported for K, Mg, Ca, P, Cr<sup>3+</sup>, Fe, and Zn were 89.53% (malting, IE3779), 49.28% (malting, IE4115), 60.41% (Malting, IE4115), 69.40% (malting, IE4115), 12.9% (malting, IE4115), 59.84% (malting, KAKW3) and 66.89% (roasting, IE3779) respectively (Table 8). For beta carotene, vitamin B1, B2, B3, B6 and B9 the values were 73.33% (malting, p224), 78.84% (malting, IE4115), 78.34 (malting, IE3779), 97.63% (malting, IE4115), 91.64% (malting, IE4115), and 77.52% (roasting, IE4115) (table The result on levels and bioaccessibility showed that IE4115 and IE3779 varieties were more nutritious and therefore should be promoted for nutritional security.展开更多
Kernel color is an important trait for assessing the commercial and nutritional quality of foxtail millet. Yellow pigment content (YPC) and carotenoid components (lutein and zeaxanthin) of 270 foxtail millet acces...Kernel color is an important trait for assessing the commercial and nutritional quality of foxtail millet. Yellow pigment content (YPC) and carotenoid components (lutein and zeaxanthin) of 270 foxtail millet accessions, including 50 landraces and 220 improved cultivars, from four different eco-regions in China were surveyed using spectrophotometry and high performance liquid chromatography methods. Results indicated that YPC had rich variance, ranging from 1.91 to 28.54 mg kg-1, with an average value of 17.80 mg kg-1. The average YPC of improved cultivars (18.31 mg kg-1) was significantly higher than that of landraces (15.51 mg kg-l). The YPC in cultivars from the Loess Plateau spring sowing region (LPSSR) was the highest (20.59 mg kg-~), followed by the North China summer sowing region (NCSSR, 18.25 mg kg-1), the northeast spring sowing region (NSSR, 17.25 mg kg-1), and the Inner Mongolia Plateau spring sowing region (IMPSSR, 13.92 mg kg-1). The variation coefficients of YPC in cultivars from NSSR, LPSSR, and IMPSSR were higher than that from NCSSR. A similar carotenoid profile was also obtained for 270 foxtail millet cultivars. Lutein and zeaxanthin accounted for approximately 55-65% of YPC in accessions. The lutein content was higher than zeaxanthin content in all cultivars. The ratio of lutein to zeaxanthin ranged from 1.51 to 6.06 with an average of 3.34. YPC was positively correlated with lutein (r=0.935, P〈0.01), zeaxanthin (r=0.808, P〈0.01 ), and growth duration (t=0.488, P〈0.01 ), whereas it was negatively correlated with grain protein (t=-0.332, P〈0.01) and 1 000-kernel weight (t=-0.153, P〈0.05). Our study is useful for screening and selecting cultivars with high levels of yellow pigment and for enhancing phytochemical concentrations in breeding programs.展开更多
Protein energy malnutrition remains a huge burden in Sub-Saharan Africa. Principally, it is due to children being fed on millet gruels which are high in carbohydrates, and low protein. Moreover, they contain significa...Protein energy malnutrition remains a huge burden in Sub-Saharan Africa. Principally, it is due to children being fed on millet gruels which are high in carbohydrates, and low protein. Moreover, they contain significant amounts of anti-nutrients such as phytates, phenols and tannins. Compositing of malted finger millet flour with other flours has potential for improving the nutritional quality and sensory attributes of these foods. The objective of this study was to determine the effect of compositing malted finger millet flour with cowpea on the anti-nutritional contents and sensory properties of formulated baby weaning food. Mixing selected improved finger millet varieties with precooked cowpea flour was based on WHO recommended levels. There was a significant (p 0.05) reduction in total phenolic content, tannin content and phytic acid by 41%, 50%, and 44%, after compositing with malted finger millet and precooked cowpea at 10.32%, 21.26% and 32.75%, respectively. Cooking process significantly reduced amount of trypsin inhibitors, and other anti-nutrients both in cowpea and complementary porridge. Loadings from principal component analysis (PCA) of 17 sensory attributes of porridge showed that approximately over 80% of the variations in sensory attributes were explained by the first four principal components. Reductions in texture attributes (stickiness and viscosity) and astringency aftertaste corresponded to increase in overall aroma and flavour of the porridge in terms of malty flavour and aroma. Although inclusion of 32.75% precooked cowpea gave the highest reduction in anti-nutrients, it resulted in cooked cowpea flavour. For consumer acceptability, it may require masking by use of commercial flavours. Therefore this work shows that malted finger millet-pre-cooked cowpea have potential to be used in formulating cultural acceptable complementary food.展开更多
The aim was to protect the Henan Yellow River carp germplasm resources and provide a scientific basis for the meat quality improvement of Yellow River carps. With artificially farmed and wild Henan Yellow River carps ...The aim was to protect the Henan Yellow River carp germplasm resources and provide a scientific basis for the meat quality improvement of Yellow River carps. With artificially farmed and wild Henan Yellow River carps as the research objects, comparative study on muscle fiber diameter and density, routine nutritional composition, calcium and phosphorus contents and amino acids composition was conducted between the two groups of carps. The results showed that the moisture content was significantly higher (P 〈0.05), the crude fat and crude protein contents were significantly lower (P〈0.05), the essential amino acids and total amino acids contents were lower (P〉0.05), the phosphorus content was higher (P 〉0.05), and the calcium content was lower (P〉0.05) in the wild group compared with those in the farming group. The analysis of muscle fiber characteristics showed that there were significant differences in the average muscle fiber diameter (P〈0.05) and muscle fiber density (P〈0.01) between the two groups of Henan Yellow River carps.展开更多
文摘A modified lower trophic ecosystem model (NEMURO) is coupled with a three-dimensional hydrodynamic model for anapplication in the central Yellow Sea. The model is used to simulate the horizontal distributions and annual cycles of chlorophyll-aand nutrients with results consistent with historical observations. Generally, during the winter background and spring bloom periods,the exchange with neighboring waters constitutes the primary sources of nutrients. Howerver, during the winter background period,the input of silicate from the layer deeper than 50 m is the most important source that contributes up to 60% to the total sources. Dur-ing the spring bloom period, the transport across the thermocline makes significant contribution to the input of phosphate and silicate.During the post spring bloom period, the relative contribution of relevant processes varies for different nutrients. For ammonium,atmospheric deposition, excretion of zooplankton and decomposition of particulate and dissolved nitrogen make similar contributionsFor phosphate and silicate, the dominant input is the transport across the thermocline, accounting for 62% and 68% of the totalsources, respectively. The N/P ratio averaged annually and over the whole southern Yellow Sea is up to 51.8, indicating the potentialof P limitation in this region. The important influence of large scale sea water circulation is revealed by both the estimated fluxes andthe corresponding N/P ratio of nutrients across a section linking the northeastern bank of the Changjiang River and Cheju Island.During the winter background period, the input of nitrate, ammonium, phosphate and silicate by the Yellow Sea Warm Current isestimated to be 4.6~ 101~, 2.3x 101~, 2.0x 109 and 1.2x 101~ mol, respectively.
基金Supported by the National "973" Program (No. G1999043705), and the Natural Sciences Foundation of Shandong Province (No. Y2000E02).
文摘Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values, concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4+, NO3-, PO43-, SiO32-) were performed. Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2–3 times higher than that in the southern Yellow Sea. In individual, Pb and PO43- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.
基金Under the auspices of National Natural Science Foundation of China(No.41971128,41371104)Key Foundation of Science and Technology Department of Fujian Province(No.2016R1032-1)the Award Program for Min River Scholar in Fujian Province(No.Min 201531)。
文摘Episodic deposition has been recognized as a major factor affecting the decomposition rate of detrital material in salt marshes. In this paper, three one-off burial treatments, no burial treatment(0 cm, NBT), current burial treatment(10 cm, CBT) and strong burial treatment(20 cm, SBT), were designed in intertidal zone of the Yellow River Estuary to determine the potential influences of episodic deposition on nutrient(C, N) and heavy metal(Pb, Cr, Cu, Zn, Ni, Mn, Cd, V and Co) variations in decomposing litters of Suaeda glauca. Results showed that although various burial treatments showed no statistical difference in decomposition rate of S. glauca, the values generally followed the sequence of CBT(0.002 403/d) > SBT(0.002 195/d) > NBT(0.002 060/d). The nutrients and heavy metals in decomposing litters of the three burial treatments exhibited different variations except for N, Cu, Cr, Ni and Co. Except for Mn, no significant differences in C, N, Pb, Cr, Cu, Zn, Ni, V and Co concentrations occurred among the three treatments(P > 0.05). With increasing burial depth, Cr and Cd levels generally increased while Cu, Ni and Mn concentrations decreased. Although episodic deposition was generally favorable for C and N release from S. glauca, its influence on release was insignificant. In the three burial treatments, Pb, Cr, Zn, Ni, Mn, V and Co stocks in S. glauca generally evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. The S. glauca were particular efficient in binding Cd and releasing Pb, Cr, Zn, Ni, Mn, V and Co, and, with increasing burial depth, stocks of Cu in decomposing litters generally shifted from release to accumulation. The experiment indicated that the potential eco-toxic risk of Pb, Cr, Zn, Ni, Mn, V and Co exposure would be serious as the strong burial episodes occurred in S. glauca marsh.
文摘Finger millet (FM) is rich in nutrients such as minerals, vitamins, and amino acids. However, the levels of nutrients and their bioaccessibility depend on the variety, the levels of ant nutrients, the chemical form of nutrients, and the type of processing methods used. The study determined the levels of selected nutrients, anti-nutrients, and bioaccessibility in raw and processed varieties of finger millet being developed by the Kenya Agricultural and Livestock Research Organization (KALRO) in Kenya. Raw finger millet seeds from KALRO Centers in Kenya were processed by malting for 60 hours and roasting at 110°C for 5 minutes as the optimal conditions. Levels of minerals were determined by AAS and AES, anti-nutrients by UV-visible spectrophotometer, proteins by the Pierce kit method, and vitamins by HPLC. The IE4115 and IE3779 showed the highest levels of nutrients and lowest levels of antinutrients hence preferred for processing and bioaccessibility studies. The level (mg/100 g) of selected minerals;K, Cr<sup>3+</sup>, Mg, Ca, P, Fe, and Zn were found to be highest in the following varieties of the FM;IE3779 (688.519 ± 1.57), IE 4115 (1.29 ± 0.07), IE4115 (294.38 ± 1.93), IE3779 (466.67 ± 4.17), IE4115 (250.92 ± 0.33), KERICHO P (16.98 ± 0.05) and IE4115 (64.10 ± 2.35) respectively. For β-carotene, vitamin B, B2, B3, B6 and B9 the levels were highest in the following varieties of FM;KAKW3 (0.023 ± 0.02), IE4115 (14.85 ± 0.16), IE4115 (12.998 ± 0.04), IE4115 (5.843 ± 0.07), IE3779 (0.06 ± 0.04) and KAKW4 (9.832 ± 0.08). Phytates, tannins, phenols, and oxalates were found to be lowest in the following varieties: IE3779 (14.20 ± 2.90, IE4115 (27.83 ± 0.73), NKFM1 (9.69 ± 0.07) and IE4115 (0.25 ± 0.01). The highest bioaccessibility values reported for K, Mg, Ca, P, Cr<sup>3+</sup>, Fe, and Zn were 89.53% (malting, IE3779), 49.28% (malting, IE4115), 60.41% (Malting, IE4115), 69.40% (malting, IE4115), 12.9% (malting, IE4115), 59.84% (malting, KAKW3) and 66.89% (roasting, IE3779) respectively (Table 8). For beta carotene, vitamin B1, B2, B3, B6 and B9 the values were 73.33% (malting, p224), 78.84% (malting, IE4115), 78.34 (malting, IE3779), 97.63% (malting, IE4115), 91.64% (malting, IE4115), and 77.52% (roasting, IE4115) (table The result on levels and bioaccessibility showed that IE4115 and IE3779 varieties were more nutritious and therefore should be promoted for nutritional security.
基金supported by the Natural Science Foundation of Shandong,China(ZR2014YL021)the earmarked fund for China Agricultural Research System(CARS-06)+1 种基金the Shandong Agricultural Research System Innovation Team,China(SDAIT-14-03)the Key Projects of Science and Technology Innovation of Shandong Academy of Agricultural Sciences,China(2014CXZ-4)
文摘Kernel color is an important trait for assessing the commercial and nutritional quality of foxtail millet. Yellow pigment content (YPC) and carotenoid components (lutein and zeaxanthin) of 270 foxtail millet accessions, including 50 landraces and 220 improved cultivars, from four different eco-regions in China were surveyed using spectrophotometry and high performance liquid chromatography methods. Results indicated that YPC had rich variance, ranging from 1.91 to 28.54 mg kg-1, with an average value of 17.80 mg kg-1. The average YPC of improved cultivars (18.31 mg kg-1) was significantly higher than that of landraces (15.51 mg kg-l). The YPC in cultivars from the Loess Plateau spring sowing region (LPSSR) was the highest (20.59 mg kg-~), followed by the North China summer sowing region (NCSSR, 18.25 mg kg-1), the northeast spring sowing region (NSSR, 17.25 mg kg-1), and the Inner Mongolia Plateau spring sowing region (IMPSSR, 13.92 mg kg-1). The variation coefficients of YPC in cultivars from NSSR, LPSSR, and IMPSSR were higher than that from NCSSR. A similar carotenoid profile was also obtained for 270 foxtail millet cultivars. Lutein and zeaxanthin accounted for approximately 55-65% of YPC in accessions. The lutein content was higher than zeaxanthin content in all cultivars. The ratio of lutein to zeaxanthin ranged from 1.51 to 6.06 with an average of 3.34. YPC was positively correlated with lutein (r=0.935, P〈0.01), zeaxanthin (r=0.808, P〈0.01 ), and growth duration (t=0.488, P〈0.01 ), whereas it was negatively correlated with grain protein (t=-0.332, P〈0.01) and 1 000-kernel weight (t=-0.153, P〈0.05). Our study is useful for screening and selecting cultivars with high levels of yellow pigment and for enhancing phytochemical concentrations in breeding programs.
文摘Protein energy malnutrition remains a huge burden in Sub-Saharan Africa. Principally, it is due to children being fed on millet gruels which are high in carbohydrates, and low protein. Moreover, they contain significant amounts of anti-nutrients such as phytates, phenols and tannins. Compositing of malted finger millet flour with other flours has potential for improving the nutritional quality and sensory attributes of these foods. The objective of this study was to determine the effect of compositing malted finger millet flour with cowpea on the anti-nutritional contents and sensory properties of formulated baby weaning food. Mixing selected improved finger millet varieties with precooked cowpea flour was based on WHO recommended levels. There was a significant (p 0.05) reduction in total phenolic content, tannin content and phytic acid by 41%, 50%, and 44%, after compositing with malted finger millet and precooked cowpea at 10.32%, 21.26% and 32.75%, respectively. Cooking process significantly reduced amount of trypsin inhibitors, and other anti-nutrients both in cowpea and complementary porridge. Loadings from principal component analysis (PCA) of 17 sensory attributes of porridge showed that approximately over 80% of the variations in sensory attributes were explained by the first four principal components. Reductions in texture attributes (stickiness and viscosity) and astringency aftertaste corresponded to increase in overall aroma and flavour of the porridge in terms of malty flavour and aroma. Although inclusion of 32.75% precooked cowpea gave the highest reduction in anti-nutrients, it resulted in cooked cowpea flavour. For consumer acceptability, it may require masking by use of commercial flavours. Therefore this work shows that malted finger millet-pre-cooked cowpea have potential to be used in formulating cultural acceptable complementary food.
基金Supported by National Natural Science Foundation of China(U1304324)~~
文摘The aim was to protect the Henan Yellow River carp germplasm resources and provide a scientific basis for the meat quality improvement of Yellow River carps. With artificially farmed and wild Henan Yellow River carps as the research objects, comparative study on muscle fiber diameter and density, routine nutritional composition, calcium and phosphorus contents and amino acids composition was conducted between the two groups of carps. The results showed that the moisture content was significantly higher (P 〈0.05), the crude fat and crude protein contents were significantly lower (P〈0.05), the essential amino acids and total amino acids contents were lower (P〉0.05), the phosphorus content was higher (P 〉0.05), and the calcium content was lower (P〉0.05) in the wild group compared with those in the farming group. The analysis of muscle fiber characteristics showed that there were significant differences in the average muscle fiber diameter (P〈0.05) and muscle fiber density (P〈0.01) between the two groups of Henan Yellow River carps.