Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., t...Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., temperature and rainfall for the division Faisalabad (semitropical region of Pakistan).The model fitted is of the linear form:the values of a,b, c have been found. The expected yield has been calculated by using the aridity indices (X1 and X2 ) and the result in the form of coefficient of determination R2 has been found equal to 0.166. The significance of the regression coefficient has been tested, which shows that the contribution to the yield from aridity index at germination and that at ripening is significant.The wheat yields are the results of a wide variety of variables, most of which show varying degree of relationship with one another, some positive and some negative in terms of output. These variables may be technology, fertilizers, pesticides, epidemics, kinds of seeds used, market price of crop and the area under cultivation etc, which can be the source of variation in the wheat yield. Since rainfall during germination and temperature at the ripening periods are the necessary factors for the yield of wheat, for this purpose these parameters have been studied in order to their contribution.展开更多
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie...Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.展开更多
Exploring the water yield and soil conservation in the Three-River-Source region is of great significance for evaluating both the ecological stability of the Qinghai-Tibet Plateau,Yellow River basin,Yangtze River basi...Exploring the water yield and soil conservation in the Three-River-Source region is of great significance for evaluating both the ecological stability of the Qinghai-Tibet Plateau,Yellow River basin,Yangtze River basin and Lancang River basin and the sustainable development of human society.The data sources for this study were land use/cover data from four phases(2000,2005,2010 and 2015),daily precipitation and temperature datasets,and the 1:1000000 Chinese soil database.These data were combined with vector data,such as data on settlements,roads,and rivers,along with population,economic raster datasets and CCSM4 common climate model prediction results.The Three-River-Source region was taken as the study area,and four land use/cover development scenarios and two climate change scenarios were designed based on the FLUS model and the downscaling correction method.The InVEST model was used to quantitatively simulate the water yield and soil erosion under different scenarios in the study area in 2030.The results showed the following:(1)Under different land use/cover development scenarios,grassland remained the dominant land use/cover type in the Three-River-Source region,and the area ratio was always greater than 67%.(2)Under the RCP4.5 climate scenario,the annual water yield and soil erosion increased by more than 7%and 3.9%,respectively.Under the RCP8.5 climate scenario,the annual water yield and soil erosion decreased by more than 3.3%and 1.3%,respectively.(3)Climate change played a leading role in the changes in water yield and soil erosion.Climate change contributed as much as 89.97%–98.00%to the change in water yield and 60.49%–95.64%to the change in the soil erosion modulus.However,the contribution of land use/cover changes to the change in regional water yield was only 2.00%–10.03%,and the contribution of the soil erosion modulus change was 4.36%–39.91%.Therefore,the land use development strategy in the Three-River-Source region should comprehensively consider issues such as regional development,the input of returning farmland to forest and grassland,and the resulting ecological benefits.展开更多
文摘Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., temperature and rainfall for the division Faisalabad (semitropical region of Pakistan).The model fitted is of the linear form:the values of a,b, c have been found. The expected yield has been calculated by using the aridity indices (X1 and X2 ) and the result in the form of coefficient of determination R2 has been found equal to 0.166. The significance of the regression coefficient has been tested, which shows that the contribution to the yield from aridity index at germination and that at ripening is significant.The wheat yields are the results of a wide variety of variables, most of which show varying degree of relationship with one another, some positive and some negative in terms of output. These variables may be technology, fertilizers, pesticides, epidemics, kinds of seeds used, market price of crop and the area under cultivation etc, which can be the source of variation in the wheat yield. Since rainfall during germination and temperature at the ripening periods are the necessary factors for the yield of wheat, for this purpose these parameters have been studied in order to their contribution.
基金supported by the National Natural Science Foundation of China (51621061, 91425302, 51379208)the Research Projects of the Agricultural Public Welfare Industry in China (201503125)the Discipline Innovative Engineering Plan (111 Program, B14002)
文摘Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China.
基金The National Key Research and Development Program of China(2016YFC0503701,2016YFB0501502)The Strategic Priority Research Program of Chinese Academy of Sciences(XDA19040301,XDA20010202,XDA23100201)The Key Project of the High Resolution Earth Observation System in China(00-Y30B14-9001-14/16)
文摘Exploring the water yield and soil conservation in the Three-River-Source region is of great significance for evaluating both the ecological stability of the Qinghai-Tibet Plateau,Yellow River basin,Yangtze River basin and Lancang River basin and the sustainable development of human society.The data sources for this study were land use/cover data from four phases(2000,2005,2010 and 2015),daily precipitation and temperature datasets,and the 1:1000000 Chinese soil database.These data were combined with vector data,such as data on settlements,roads,and rivers,along with population,economic raster datasets and CCSM4 common climate model prediction results.The Three-River-Source region was taken as the study area,and four land use/cover development scenarios and two climate change scenarios were designed based on the FLUS model and the downscaling correction method.The InVEST model was used to quantitatively simulate the water yield and soil erosion under different scenarios in the study area in 2030.The results showed the following:(1)Under different land use/cover development scenarios,grassland remained the dominant land use/cover type in the Three-River-Source region,and the area ratio was always greater than 67%.(2)Under the RCP4.5 climate scenario,the annual water yield and soil erosion increased by more than 7%and 3.9%,respectively.Under the RCP8.5 climate scenario,the annual water yield and soil erosion decreased by more than 3.3%and 1.3%,respectively.(3)Climate change played a leading role in the changes in water yield and soil erosion.Climate change contributed as much as 89.97%–98.00%to the change in water yield and 60.49%–95.64%to the change in the soil erosion modulus.However,the contribution of land use/cover changes to the change in regional water yield was only 2.00%–10.03%,and the contribution of the soil erosion modulus change was 4.36%–39.91%.Therefore,the land use development strategy in the Three-River-Source region should comprehensively consider issues such as regional development,the input of returning farmland to forest and grassland,and the resulting ecological benefits.