Yielding support is often used in the squeezing tunnel to prevent damage to the lining induced by large deformation of the surrounding rock.Highly Deformable Elements(HDE)which is often installed along the circumferen...Yielding support is often used in the squeezing tunnel to prevent damage to the lining induced by large deformation of the surrounding rock.Highly Deformable Elements(HDE)which is often installed along the circumferential direction of the shotcrete lining is a common type of yielding support.To determine the yield parameters of HDE,the support characteristic of the lining using HDE and the ground pressure considering strain-softening of soft rock were analyzed by an analytical method.The analytical solution showed that when considering the strain-softening of squeezing ground,the ground pressure has a non-zero minimum value.The minimum value of ground stress can be used to determine the constant yield stress of the HDE,and the corresponding deformation of the minimum ground pressure can be used to determine the deformation capacity of the HDE.Based on the variation in the design constant yield stress and yield displacement of HDE with the in-situ stress and the mechanical parameters of the soft rock,equations were proposed for determining of the yield parameters of the HDE.展开更多
Abstract There are many soft-rock roadway coal mines in China. The surrounding rocks of the high-stress soft-rock roadways in deep mine are especially difficult to be supported using the traditional supporting way. In...Abstract There are many soft-rock roadway coal mines in China. The surrounding rocks of the high-stress soft-rock roadways in deep mine are especially difficult to be supported using the traditional supporting way. In this study, the south wing rail roadway on the second level of Yunjialing coal mine in China was used as an example to analyze the deformation and failure characteristics and influencing factors of roadway. On this basis, this study proposed the equalized yielding support idea which employs the yielding rings to realize the pressure equalization on the bolts and cables in the section. To achieve this purpose, the first bolt-mesh-cable equalizing pressure yielding support was integrated with the second grouting reinforcement. The results proved that the yield rings of the bolts and cables on the spandrel of the arched roadway firstly developed yielding deformation; then the deformation extended to the vault of the roadway; the bolts and cables achieved a yielding extreme value of 15 and 18 tonnes, respectively. The roadway surrounding rock tended to be stable at the 26th day after the maintenance. The equalizing pressure yielding supporting technology plays a moderate pressure-releasing and actively controlling role on the surrounding rocks in the soft-rock roadway with large deformation.展开更多
Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of su...Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice.展开更多
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w...A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.展开更多
A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plast...A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures.展开更多
In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed r...In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale展开更多
According to the convergence confinement theory,it is an effective measure to control the large deformation of high ground stress in fractured soft rock tunnels by using yielding support.The yielding support can be cl...According to the convergence confinement theory,it is an effective measure to control the large deformation of high ground stress in fractured soft rock tunnels by using yielding support.The yielding support can be classified as either radial or circumferential yielding support.Circumferential yielding support is achieved by transforming radial displacement into circumferential tangential closure without compromising the support capacity of the primary lining support structure.Based on this,and inspired by the design principle of dampers,a yielding support structure system with spring damping elements as its core was developed,based on the connection characteristics of steel arches in highway tunnel,which can provide increasing support resistance in the yielding deformation section.Then the mechanical properties of spring damping elements were obtained through indoor axial pressure and flexural tests.In addition,according to these results with numerical calculations,the yielding support structure system with embedded spring damping elements can reduce the internal force of the support structure by approximately 10%and increase the area of the plastic zone of the surrounding rock by 11.23%,which can fully utilize the self-bearing capacity of surrounding rock and verify the effectiveness of circumferential yielding support.Finally,the spring damping support structure system was designed with reference to the construction process of the tunnel excavated by drilling and blasting method,and the transformation of the spring damping element to spring damping support structure was achieved.Based on field test results,surrounding ground pressure for the yielding support optimization scheme was reduced by 40%and more evenly distributed,resulting in the successful application and a reduction in the construction cost of large deformation tunnels in soft rock.展开更多
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su...In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.展开更多
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ...Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.展开更多
基金the support of the National Natural Science Foundation of China(Grant Nos.52179113,51991392 and 52279119)the Second Comprehensive Scientific Expedition on the Tibetan Plateau(No.2019QZKK0904)。
文摘Yielding support is often used in the squeezing tunnel to prevent damage to the lining induced by large deformation of the surrounding rock.Highly Deformable Elements(HDE)which is often installed along the circumferential direction of the shotcrete lining is a common type of yielding support.To determine the yield parameters of HDE,the support characteristic of the lining using HDE and the ground pressure considering strain-softening of soft rock were analyzed by an analytical method.The analytical solution showed that when considering the strain-softening of squeezing ground,the ground pressure has a non-zero minimum value.The minimum value of ground stress can be used to determine the constant yield stress of the HDE,and the corresponding deformation of the minimum ground pressure can be used to determine the deformation capacity of the HDE.Based on the variation in the design constant yield stress and yield displacement of HDE with the in-situ stress and the mechanical parameters of the soft rock,equations were proposed for determining of the yield parameters of the HDE.
文摘Abstract There are many soft-rock roadway coal mines in China. The surrounding rocks of the high-stress soft-rock roadways in deep mine are especially difficult to be supported using the traditional supporting way. In this study, the south wing rail roadway on the second level of Yunjialing coal mine in China was used as an example to analyze the deformation and failure characteristics and influencing factors of roadway. On this basis, this study proposed the equalized yielding support idea which employs the yielding rings to realize the pressure equalization on the bolts and cables in the section. To achieve this purpose, the first bolt-mesh-cable equalizing pressure yielding support was integrated with the second grouting reinforcement. The results proved that the yield rings of the bolts and cables on the spandrel of the arched roadway firstly developed yielding deformation; then the deformation extended to the vault of the roadway; the bolts and cables achieved a yielding extreme value of 15 and 18 tonnes, respectively. The roadway surrounding rock tended to be stable at the 26th day after the maintenance. The equalizing pressure yielding supporting technology plays a moderate pressure-releasing and actively controlling role on the surrounding rocks in the soft-rock roadway with large deformation.
文摘Extreme ground behaviour in high-stress rock masses such as rockburst prone and squeezing ground conditions are encountered in a range of underground projects both in civil and mining applications.The occurrence of such ground behaviour types are difficult to predict and special design and construction measures must be taken to control them.Determining the most appropriate support system in such grounds is one of the major challenges for ground control engineers because there are many contributing factors to be considered,such as the rock mass parameters,the stress condition,the type and performance of the support systems,the condition of major geological structures and the size and geometry of the underground excavation.The main characteristics and support requirements of rockburst-prone and squeezing ground conditions are herein critically reviewed and characteristics of support functions are discussed.Different types of energy-absorbing rockbolts and other support elements applicable for ground support in burst-prone and squeezing grounds are introduced.Important differences in the choice and economics of ground support strategies in high-stress ground conditions between civil tunnels and mining excavations are discussed.Ground support benchmarking data and mitigation measures for mines and civil tunnels in burst-prone,squeezing and heavily swelling grounds conditions are briefly presented by some examples in practice.
基金supported by the National Natural Science Foundation of China (No. 50874103)the National Basic Research Program of China (No. 2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK2008135)as well as by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No. SKLGDUEK0905)
文摘A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.
基金Project(50969007)supported by National Natural Science Foundation of ChinaProject(GJJ13753)supported by the Scientific and Technological Research Fund,Department of Education,Jiangxi Province,China
文摘A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51174195)the Graduate Student Scientific Research Innovation Project of the Jiangsu Province Ordinary University (No. CXZZ12_0954)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X04)
文摘In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale
基金supported by the National Nature Science Funds of China(Grant Nos.52038008,and 42207176)the Science and Technology Project of the Department of Transport of Yunnan Province China(Yunnan Transportation Science and Education[2021]No.7)Ningbo Natural Science Funds(Grant No.2022J116).The authors gratefully acknowledge their financial support.
文摘According to the convergence confinement theory,it is an effective measure to control the large deformation of high ground stress in fractured soft rock tunnels by using yielding support.The yielding support can be classified as either radial or circumferential yielding support.Circumferential yielding support is achieved by transforming radial displacement into circumferential tangential closure without compromising the support capacity of the primary lining support structure.Based on this,and inspired by the design principle of dampers,a yielding support structure system with spring damping elements as its core was developed,based on the connection characteristics of steel arches in highway tunnel,which can provide increasing support resistance in the yielding deformation section.Then the mechanical properties of spring damping elements were obtained through indoor axial pressure and flexural tests.In addition,according to these results with numerical calculations,the yielding support structure system with embedded spring damping elements can reduce the internal force of the support structure by approximately 10%and increase the area of the plastic zone of the surrounding rock by 11.23%,which can fully utilize the self-bearing capacity of surrounding rock and verify the effectiveness of circumferential yielding support.Finally,the spring damping support structure system was designed with reference to the construction process of the tunnel excavated by drilling and blasting method,and the transformation of the spring damping element to spring damping support structure was achieved.Based on field test results,surrounding ground pressure for the yielding support optimization scheme was reduced by 40%and more evenly distributed,resulting in the successful application and a reduction in the construction cost of large deformation tunnels in soft rock.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51204166)the Henan Polytechnic University Doctor Foundation (No. B2012-081)
文摘In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.
基金Supported by the National Natural Science Fundation of China (50674045)the National "973" Planning Project(2007CB209403)
文摘Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.