Yttrium silicate, for its high oxidation resistance, is an important candidate for protective coating for carbon-fiber-reinforced composites at temperatures above 1600 ℃. A novel method, consisting of coprecipitation...Yttrium silicate, for its high oxidation resistance, is an important candidate for protective coating for carbon-fiber-reinforced composites at temperatures above 1600 ℃. A novel method, consisting of coprecipitation, spray-drying, heat-treatment and plasma-densification, is developed to prepare Y2SiO5 powders for thermal-spraying. The composition, morphology and flowability of the synthesized Y2SiO5 powders are investigated by XRD, SEM and Hall Flowmeter, respectively. The results show that the synthesized Y2SiO5 powders are nearly spherical with high purity. The apparent density and flowability of the Y2SiO5 powders are 1.87 g/cm^3 and 37 s/50 g, respectively, which lead to a high deposition efficiency of up to 80700 for atmospheric plasma spraying.展开更多
基金supported by the National Fundamental Research Program (No. A1320070102)
文摘Yttrium silicate, for its high oxidation resistance, is an important candidate for protective coating for carbon-fiber-reinforced composites at temperatures above 1600 ℃. A novel method, consisting of coprecipitation, spray-drying, heat-treatment and plasma-densification, is developed to prepare Y2SiO5 powders for thermal-spraying. The composition, morphology and flowability of the synthesized Y2SiO5 powders are investigated by XRD, SEM and Hall Flowmeter, respectively. The results show that the synthesized Y2SiO5 powders are nearly spherical with high purity. The apparent density and flowability of the Y2SiO5 powders are 1.87 g/cm^3 and 37 s/50 g, respectively, which lead to a high deposition efficiency of up to 80700 for atmospheric plasma spraying.