Y2O2S:Eu3+,Mg2+,Ti4+ nanorods were prepared by a solvothermal procedure.Rod-like Y(OH)3 was firstly synthesized by hydrothermal method to serve as the precursor.Y2O2S:Eu3+,Mg2+,Ti4+ powders were obtained by calcinatin...Y2O2S:Eu3+,Mg2+,Ti4+ nanorods were prepared by a solvothermal procedure.Rod-like Y(OH)3 was firstly synthesized by hydrothermal method to serve as the precursor.Y2O2S:Eu3+,Mg2+,Ti4+ powders were obtained by calcinating the precursor at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ phosphor with diameters of 30–50 nm and lengths up to 200–400 nm inherited the rod-like shape from the precursor after calcined at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ nanorods showed hexagonal pure phase,good dispersion and exhibite...展开更多
The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The m...The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors.展开更多
The phosphor Y2O2S:Eu3+ powder crystal has been synthesized by using the microwave thermal method.The data of X-ray powder diffraction showed that the phosphor structure belongs to hexagonal system with lattice parame...The phosphor Y2O2S:Eu3+ powder crystal has been synthesized by using the microwave thermal method.The data of X-ray powder diffraction showed that the phosphor structure belongs to hexagonal system with lattice parameters a=0.3785 nm,c=0.6590nm.The excitation spectrum of the phosphor is a broad band with peak at λ(ex)= 261 nm.The main emission peak at λ(em)=626nm and the other emission lines peak at 595,617 and 706 nm are assigned to transitions of the Eu3+ respectively.Under 254 nm excitation,the chromatic coordinates of phosphor are x=0.665, y=0.330.The relative luminescent intensity is about 62% compared with the standard phosphor Y2O3:Eu3+.Under 365nm excitation this phosphor gives rise to an intense red light.The phosphor particle size has a medium diameter of 7.3μm.展开更多
Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure,...Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure, and the phase analyses show that the product is in single phase. The luminescence spectra and decay curve were measured on a Hitachi F-4500 fluorescence spectrophotometer. The decay time was determined on an ST-900PM weak light photometer. The analyses show that host doping of Lu improves both luminescence and decay time of the materials. The concentration of doped Lu and Sm was varied in order to determine the optimal condition and to synthesize the product with the best properties. The mechanism of the long afterglow was also briefly discussed.展开更多
Well dispersed and homogeneous Y2O2S:Sm3+ hollow submicrospheres were successfully achieved by a template- free solvothermal method combining with a postcalcining process. The crystalstructure and particle morpholog...Well dispersed and homogeneous Y2O2S:Sm3+ hollow submicrospheres were successfully achieved by a template- free solvothermal method combining with a postcalcining process. The crystalstructure and particle morphology were investigated by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, scanning and transmission electron microscopy (SEM and TEM), respectively. A possible growth mechanism was proposed to reveal the formation process. Luminescence properties of the Y202S:Sm3+ long-lasting phosphor were an- alyzed by measuring the excitation spectra, emission spectra, afterglow decay curve and thermoluminescence curve. The excitation spectra indicated that the phosphor could be excited effectively by the ultraviolet-light emitting diode (UV-LED) or blue LED, and the emission spectra showed that the phosphor could emit red light from 600 to 650 nm.展开更多
基金supported by the National Natural Science Foundation of China (20671042, 50872045)the Natural Science Foundations of Guangdong Province (0520055, 7005918)
文摘Y2O2S:Eu3+,Mg2+,Ti4+ nanorods were prepared by a solvothermal procedure.Rod-like Y(OH)3 was firstly synthesized by hydrothermal method to serve as the precursor.Y2O2S:Eu3+,Mg2+,Ti4+ powders were obtained by calcinating the precursor at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ phosphor with diameters of 30–50 nm and lengths up to 200–400 nm inherited the rod-like shape from the precursor after calcined at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ nanorods showed hexagonal pure phase,good dispersion and exhibite...
文摘The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors.
文摘The phosphor Y2O2S:Eu3+ powder crystal has been synthesized by using the microwave thermal method.The data of X-ray powder diffraction showed that the phosphor structure belongs to hexagonal system with lattice parameters a=0.3785 nm,c=0.6590nm.The excitation spectrum of the phosphor is a broad band with peak at λ(ex)= 261 nm.The main emission peak at λ(em)=626nm and the other emission lines peak at 595,617 and 706 nm are assigned to transitions of the Eu3+ respectively.Under 254 nm excitation,the chromatic coordinates of phosphor are x=0.665, y=0.330.The relative luminescent intensity is about 62% compared with the standard phosphor Y2O3:Eu3+.Under 365nm excitation this phosphor gives rise to an intense red light.The phosphor particle size has a medium diameter of 7.3μm.
基金Project supported bythe Foundation of USTB,China
文摘Gd- or Lu-doped long afterglow red phosphor Y2O2S:Sm^3+ was synthesized using the high temperature flux fusion method. The obtained phosphors were analyzed using X-ray diffraction to determine the crystal structure, and the phase analyses show that the product is in single phase. The luminescence spectra and decay curve were measured on a Hitachi F-4500 fluorescence spectrophotometer. The decay time was determined on an ST-900PM weak light photometer. The analyses show that host doping of Lu improves both luminescence and decay time of the materials. The concentration of doped Lu and Sm was varied in order to determine the optimal condition and to synthesize the product with the best properties. The mechanism of the long afterglow was also briefly discussed.
基金supported by the National Natural Science Foundation of China (Nos.21071063 and 50872045)
文摘Well dispersed and homogeneous Y2O2S:Sm3+ hollow submicrospheres were successfully achieved by a template- free solvothermal method combining with a postcalcining process. The crystalstructure and particle morphology were investigated by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, scanning and transmission electron microscopy (SEM and TEM), respectively. A possible growth mechanism was proposed to reveal the formation process. Luminescence properties of the Y202S:Sm3+ long-lasting phosphor were an- alyzed by measuring the excitation spectra, emission spectra, afterglow decay curve and thermoluminescence curve. The excitation spectra indicated that the phosphor could be excited effectively by the ultraviolet-light emitting diode (UV-LED) or blue LED, and the emission spectra showed that the phosphor could emit red light from 600 to 650 nm.