YVO4:Er^3+,Yb^3+ with varying Yb^3+ concentrations were prepared by a precipitation method.The results of X-ray diffraction (XRD) show that all the samples have a tetragonal zircon structure; the calculated aver...YVO4:Er^3+,Yb^3+ with varying Yb^3+ concentrations were prepared by a precipitation method.The results of X-ray diffraction (XRD) show that all the samples have a tetragonal zircon structure; the calculated average crystallite sizes are in the range of 14-22 nm.The lattice constants and cell volume of the samples decrease slightly with the increase in Yb^3+ concentration.The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation.The strong green emission is observed,which is attributed to the 2^H11/2→4I15/2 and 4^S3/2→4^I15/2 transitions of Er^3+,and the red emission peaks in 650-675 nm can be ignored.The emission intensity for the sample depends on the Yb^3+concentration.These results reveal that the upconversion processes of YVO4:Er^3+,Yb^3+ are related to the structure and the doping Yb^3+ concentration of the sample.展开更多
Trivalent dysprosium(Dy) activated nanocrystalline yttrium vanadate(YVO) phosphor was synthesized via co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD),Fourier transform infrar...Trivalent dysprosium(Dy) activated nanocrystalline yttrium vanadate(YVO) phosphor was synthesized via co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), optical absorption and photo luminescence(PL) techniques. The XRD patterns reveal the tetragonal crystalline phase. SEM images reveal that Dy doped YVOnanocrystals are agglomerated. EDAX confirms the formation of YVO:Dy. FTIR spectrum shows two strong absorption bands at 459 and 761 cm. Optical absorption spectrum showed the surface defects in the as-prepared samples. The PL emission spectrum shows two characteristic emission bands at 485 and 575 nm. The strong yellow emission peak at 575 nm is assigned to ~4 F→~6 Hhyper sensitive transition of Dyions, Study of CIE chromaticity diagram indicates the suitability of the phosphor for the development of yellow-green LEDs.展开更多
基金supported by the Educational Department Project of Liaoning Province(No.2005319)
文摘YVO4:Er^3+,Yb^3+ with varying Yb^3+ concentrations were prepared by a precipitation method.The results of X-ray diffraction (XRD) show that all the samples have a tetragonal zircon structure; the calculated average crystallite sizes are in the range of 14-22 nm.The lattice constants and cell volume of the samples decrease slightly with the increase in Yb^3+ concentration.The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation.The strong green emission is observed,which is attributed to the 2^H11/2→4I15/2 and 4^S3/2→4^I15/2 transitions of Er^3+,and the red emission peaks in 650-675 nm can be ignored.The emission intensity for the sample depends on the Yb^3+concentration.These results reveal that the upconversion processes of YVO4:Er^3+,Yb^3+ are related to the structure and the doping Yb^3+ concentration of the sample.
文摘Trivalent dysprosium(Dy) activated nanocrystalline yttrium vanadate(YVO) phosphor was synthesized via co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), optical absorption and photo luminescence(PL) techniques. The XRD patterns reveal the tetragonal crystalline phase. SEM images reveal that Dy doped YVOnanocrystals are agglomerated. EDAX confirms the formation of YVO:Dy. FTIR spectrum shows two strong absorption bands at 459 and 761 cm. Optical absorption spectrum showed the surface defects in the as-prepared samples. The PL emission spectrum shows two characteristic emission bands at 485 and 575 nm. The strong yellow emission peak at 575 nm is assigned to ~4 F→~6 Hhyper sensitive transition of Dyions, Study of CIE chromaticity diagram indicates the suitability of the phosphor for the development of yellow-green LEDs.