We conducted genome sequence analysis to examine the presence/absence of two types of Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 914 organisms from bacteria, and 199 organisms f...We conducted genome sequence analysis to examine the presence/absence of two types of Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 914 organisms from bacteria, and 199 organisms from eukaryotes. RecA protein from Escherichia coli has a Z-DNA binding domain and this protein promotes homologous recombination. All the organisms examined had this domain. This result indicated that this domain is essential for all the organisms. RNA editing enzyme, adenosine deaminase from human has another type of Z-DNA binding domain. This domain was observed in some organisms of archaea, bacteria, and eukaryotes. The presence/absence of Z-DNA binding domain in adenosine deaminase indicated that gain and loss of this domain had occurred in the process of evolution. The implication of presence and absence of this domain is discussed in this study.展开更多
文摘We conducted genome sequence analysis to examine the presence/absence of two types of Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 914 organisms from bacteria, and 199 organisms from eukaryotes. RecA protein from Escherichia coli has a Z-DNA binding domain and this protein promotes homologous recombination. All the organisms examined had this domain. This result indicated that this domain is essential for all the organisms. RNA editing enzyme, adenosine deaminase from human has another type of Z-DNA binding domain. This domain was observed in some organisms of archaea, bacteria, and eukaryotes. The presence/absence of Z-DNA binding domain in adenosine deaminase indicated that gain and loss of this domain had occurred in the process of evolution. The implication of presence and absence of this domain is discussed in this study.