In this article we show that there exists an analogue of the Fourier duality technique in the setting a series of shift-invariant spaces.Really,every a series shift-invariant spaceΣ^𝑛𝑖=1𝑉x...In this article we show that there exists an analogue of the Fourier duality technique in the setting a series of shift-invariant spaces.Really,every a series shift-invariant spaceΣ^𝑛𝑖=1𝑉𝜙𝑖𝑖with a stable generator^𝑛𝑖=1𝜙𝑖is the range space of a bounded one-to-one linear operator𝑇𝑇between𝐿𝐿2(0,1)and𝐿𝐿2(R).We show regular and irregular sampling formulas inΣ𝑛𝑛𝑖𝑖=1𝑉𝑉𝜙𝜙𝑖𝑖are obtained by transforming.展开更多
Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear peri...Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear periodically but intermittently. Complete Gabor systems and Gabor frames on discrete periodic sets are characterized; a sufficient and necessary condition on what periodic sets admit complete Gabor systems is obtained; this condition is also proved to be sufficient and necessary for the existence of sets E such that the Gabor systems generated by χE are tight frames on these periodic sets; our proof is constructive, and all tight frames of the above form with a special frame bound can be obtained by our method; periodic sets admitting Gabor Riesz bases are characterized; some examples are also provided to illustrate the general theory.展开更多
An orthogonal scaling function (?)(t) can realize perfect A/D (Analogue/Digital) and D/A if and only if (?)(t) is cardinal in the case of scalar wavelet. But it is not true when it comes to multiwavelets. Even if a mu...An orthogonal scaling function (?)(t) can realize perfect A/D (Analogue/Digital) and D/A if and only if (?)(t) is cardinal in the case of scalar wavelet. But it is not true when it comes to multiwavelets. Even if a multiscaling function ?(t) is not cardinal, it also holds for perfect A/D and D/A. This property shows the limitation of Selesnick's sampling theorem. In this paper, we present a general sampling theorem for multiwavelet subspaces by Zak transform and make a large family of multiwavelets with some good properties (orthogonality, compact support, symmetry, high approximation order, etc.), but not necessarily with cardinal property, realize perfect A/D and D/A. Moreover, Selesnick's result is just the special case of our theorem. And our theorem is suitable for some symmetrical or nonorthogonal multiwavelets.展开更多
Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters...Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2 (S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2 (S).展开更多
文摘In this article we show that there exists an analogue of the Fourier duality technique in the setting a series of shift-invariant spaces.Really,every a series shift-invariant spaceΣ^𝑛𝑖=1𝑉𝜙𝑖𝑖with a stable generator^𝑛𝑖=1𝜙𝑖is the range space of a bounded one-to-one linear operator𝑇𝑇between𝐿𝐿2(0,1)and𝐿𝐿2(R).We show regular and irregular sampling formulas inΣ𝑛𝑛𝑖𝑖=1𝑉𝑉𝜙𝜙𝑖𝑖are obtained by transforming.
基金supported by National Natural Science Foundation of China (Grant No. 10671008)Beijing Natural Science Foundation (Grant No. 1092001)PHR (IHLB) and the project sponsored by SRF for ROCS,SEM of China
文摘Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear periodically but intermittently. Complete Gabor systems and Gabor frames on discrete periodic sets are characterized; a sufficient and necessary condition on what periodic sets admit complete Gabor systems is obtained; this condition is also proved to be sufficient and necessary for the existence of sets E such that the Gabor systems generated by χE are tight frames on these periodic sets; our proof is constructive, and all tight frames of the above form with a special frame bound can be obtained by our method; periodic sets admitting Gabor Riesz bases are characterized; some examples are also provided to illustrate the general theory.
基金This work was supported by the National Natural Science Foundation of China(Grant No. 69875014) and the Foundation of University Key Teacher by the Ministry of Education (Grant No. GG-520-10530-1022).
文摘An orthogonal scaling function (?)(t) can realize perfect A/D (Analogue/Digital) and D/A if and only if (?)(t) is cardinal in the case of scalar wavelet. But it is not true when it comes to multiwavelets. Even if a multiscaling function ?(t) is not cardinal, it also holds for perfect A/D and D/A. This property shows the limitation of Selesnick's sampling theorem. In this paper, we present a general sampling theorem for multiwavelet subspaces by Zak transform and make a large family of multiwavelets with some good properties (orthogonality, compact support, symmetry, high approximation order, etc.), but not necessarily with cardinal property, realize perfect A/D and D/A. Moreover, Selesnick's result is just the special case of our theorem. And our theorem is suitable for some symmetrical or nonorthogonal multiwavelets.
基金Supported by National Natural Science Foundation of China(Grant Nos.10901013and11271037)Beijing Natural Science Foundation(Grant No.1122008)Fundamental Research Funds for the Central Universities(Grant No.2011JBM299)
文摘Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2 (S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2 (S).