Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations....Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations. Differential atmospheric signals extracted from the SAR data for two selected areas show apparent power law characteristics. The RMS values of the signals are 2.04 and 3.66 rad respectively for the two areas. These differential delays can potentially cause in the two areas peak-to-peak deformation errors of 3.64 and 6.52cm, respectively, at the 95% confidence level and Gaussian distribution. The respective potential peak-to-peak DEM errors are 123 and 221 m. The GPS tropospheric total zenith delays estimate indicates that a peak-to-peak error of about 7.8cm can potentially be caused in a SAR interferogram with only 1 d interval at the 95% confidence level. The error increases to about 9.6cm for 10 d interval. The potential peak-to-peak DEM and deformation errors estimated from GPS total zenith delay measurements are however quite similar to those estimated from InSAR data. This provides us with a useful tool to pre-estimate the potential atmospheric effects in a SAR interferogram before we order the SAR images. Nevertheless, the results reveal that even in a small area the atmospheric delays can obscure centimetre level ground displacements and introduce a few hundred meters of errors to derived DEM.展开更多
提出了一种无需气象数据,直接用对流层天顶总延迟(zenith total delay,ZTD)推导大气可降水量(precipitable water vapor,PWV)的新方法。该方法从GPS反演大气水汽的反演方程出发,基于最小二乘法建立ZTD推算PWV的模型。结果表明,就BJFS测...提出了一种无需气象数据,直接用对流层天顶总延迟(zenith total delay,ZTD)推导大气可降水量(precipitable water vapor,PWV)的新方法。该方法从GPS反演大气水汽的反演方程出发,基于最小二乘法建立ZTD推算PWV的模型。结果表明,就BJFS测站而言,模型推算的PWV与GPS反演的PWV的均方根(root mean square,RMS)值为4.5 mm,两者存在一个微小的系统偏差,但相关系数高达0.982。在不研究其数值大小只研究其趋势变化时,可以用模型直接推算PWV,这可为气象学短期预报提供一定参考。展开更多
文摘Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations. Differential atmospheric signals extracted from the SAR data for two selected areas show apparent power law characteristics. The RMS values of the signals are 2.04 and 3.66 rad respectively for the two areas. These differential delays can potentially cause in the two areas peak-to-peak deformation errors of 3.64 and 6.52cm, respectively, at the 95% confidence level and Gaussian distribution. The respective potential peak-to-peak DEM errors are 123 and 221 m. The GPS tropospheric total zenith delays estimate indicates that a peak-to-peak error of about 7.8cm can potentially be caused in a SAR interferogram with only 1 d interval at the 95% confidence level. The error increases to about 9.6cm for 10 d interval. The potential peak-to-peak DEM and deformation errors estimated from GPS total zenith delay measurements are however quite similar to those estimated from InSAR data. This provides us with a useful tool to pre-estimate the potential atmospheric effects in a SAR interferogram before we order the SAR images. Nevertheless, the results reveal that even in a small area the atmospheric delays can obscure centimetre level ground displacements and introduce a few hundred meters of errors to derived DEM.
文摘提出了一种无需气象数据,直接用对流层天顶总延迟(zenith total delay,ZTD)推导大气可降水量(precipitable water vapor,PWV)的新方法。该方法从GPS反演大气水汽的反演方程出发,基于最小二乘法建立ZTD推算PWV的模型。结果表明,就BJFS测站而言,模型推算的PWV与GPS反演的PWV的均方根(root mean square,RMS)值为4.5 mm,两者存在一个微小的系统偏差,但相关系数高达0.982。在不研究其数值大小只研究其趋势变化时,可以用模型直接推算PWV,这可为气象学短期预报提供一定参考。