Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment mon...Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
This paper presents the ZINDOT model,a methodology utilizing a zero-inflated negative binomial model with the variables used in the United States Department of Transportation(USDOT)accident prediction formula,to deter...This paper presents the ZINDOT model,a methodology utilizing a zero-inflated negative binomial model with the variables used in the United States Department of Transportation(USDOT)accident prediction formula,to determine the expected accident count at a highway-rail grade crossing.The model developed contains separate formulas to estimate the crash prediction value depending on the warning device type installed at the crossing:crossings with gates,crossings with flashing lights and no gates,and crossings with crossbucks.The proposed methodology also accounts for the observed accident count at a crossing using the Empirical Bayes method.The ZINDOT model estimates were compared to the USDOT model estimates to rank the crossings based on the expected accident frequency.It is observed that the new model can identify crossings with a greater number of accidents with Gates and Flashing Lights and Crossbucks in both Illinois(data which were used to develop the model)and Texas(data which were used to validate the model).A practitioner already using the USDOT formulae to estimate expected accident count at a crossing could easily use the ZINDOT model as it employs the same variables used in the USDOT formula.This methodology could be used to rank highway-rail grade crossings for resource allocation and safety improvement.展开更多
Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault re...Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses;it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential.展开更多
Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quali...Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quality of the reflecting surface and it is hard to gethigh resolution. Considering the concentric-circle gratings, the displacement can only be gainedwith complicated calculating of the experiment data. Compared with the advantages and limitations ofthe methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. Thiskind of mark has an absolute zero-reference when used in pair, and the experimental result is simpleto dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position ofthe two marks can be detected by the maximum output of the sharp intensity peak. And each slope ofthe peak is of good linearity which can be used to achieve high resolution in positioning andalignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introducedin detail. The experiment results are agreed with the theoretical ones.展开更多
Existing studies via shot noise calculation conclude that the cross correlation between the currents in the two leads connected by a pair of Majorana zero modes(MZMs)vanishes when their coupling energy𝜖∈_(M)...Existing studies via shot noise calculation conclude that the cross correlation between the currents in the two leads connected by a pair of Majorana zero modes(MZMs)vanishes when their coupling energy𝜖∈_(M)→0.Motivated by the intrinsic nature of nonlocality of the MZMs,we revisit this important problem and propose an experimental scheme to demonstrate the nonvanishing cross correlation even at the limit𝜖∈_(M)→0.The proposed scheme employs the Andreevprocess-associated branch circuit currents,which are theoretically obtained by applying a decomposition analysis for the total currents while are accessible directly in practical measurement.For different bias voltage setup,we find intriguing results of both negative and positive correlations and carry out simple physical understanding using a quantum jump technique.Importantly,combining together with the evidence of the zero-bias-peak of conductance,the nonlocal cross correlation predicted in this work can help to confirm the existence of the nonlocal MZMs.展开更多
Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high ...Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high portfolio losses (more general risk measure) based on the Cross - Entropy importance sampling is developed. This algorithm can easily be applied in any light- or heavy-tailed case without an extra adaptation. Besides, it does not loose in the performance in comparison to other known methods. A numerical study in both cases is performed and the variance reduction rate is compared with other known methods. The problem of VaR estimation using procedures for estimating the probability of high portfolio losses is also discussed.展开更多
基金The National Natural Science Foundation of China under contract No.41976169.
文摘Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
文摘This paper presents the ZINDOT model,a methodology utilizing a zero-inflated negative binomial model with the variables used in the United States Department of Transportation(USDOT)accident prediction formula,to determine the expected accident count at a highway-rail grade crossing.The model developed contains separate formulas to estimate the crash prediction value depending on the warning device type installed at the crossing:crossings with gates,crossings with flashing lights and no gates,and crossings with crossbucks.The proposed methodology also accounts for the observed accident count at a crossing using the Empirical Bayes method.The ZINDOT model estimates were compared to the USDOT model estimates to rank the crossings based on the expected accident frequency.It is observed that the new model can identify crossings with a greater number of accidents with Gates and Flashing Lights and Crossbucks in both Illinois(data which were used to develop the model)and Texas(data which were used to validate the model).A practitioner already using the USDOT formulae to estimate expected accident count at a crossing could easily use the ZINDOT model as it employs the same variables used in the USDOT formula.This methodology could be used to rank highway-rail grade crossings for resource allocation and safety improvement.
基金Supported by:National Natural Science Foundation of China under Grant Nos.51378341,51427901 and 51678407National Key Research and Development Program under Grant No.2016YFC0701108
文摘Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses;it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential.
基金This project is supported by National Natural Science Foundation of China(No.50335050, No.50275140)Specialized Research Foundation for Doctoral Program of Higher Education (SRFDP) of China(No. 20030358020).
文摘Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quality of the reflecting surface and it is hard to gethigh resolution. Considering the concentric-circle gratings, the displacement can only be gainedwith complicated calculating of the experiment data. Compared with the advantages and limitations ofthe methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. Thiskind of mark has an absolute zero-reference when used in pair, and the experimental result is simpleto dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position ofthe two marks can be detected by the maximum output of the sharp intensity peak. And each slope ofthe peak is of good linearity which can be used to achieve high resolution in positioning andalignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introducedin detail. The experiment results are agreed with the theoretical ones.
基金the National Key Research and Development Program of China(Grant No.2017YFA0303304)the National Natural Science Foundation of China(Grant Nos.11675016,11974011,and 61905174).
文摘Existing studies via shot noise calculation conclude that the cross correlation between the currents in the two leads connected by a pair of Majorana zero modes(MZMs)vanishes when their coupling energy𝜖∈_(M)→0.Motivated by the intrinsic nature of nonlocality of the MZMs,we revisit this important problem and propose an experimental scheme to demonstrate the nonvanishing cross correlation even at the limit𝜖∈_(M)→0.The proposed scheme employs the Andreevprocess-associated branch circuit currents,which are theoretically obtained by applying a decomposition analysis for the total currents while are accessible directly in practical measurement.For different bias voltage setup,we find intriguing results of both negative and positive correlations and carry out simple physical understanding using a quantum jump technique.Importantly,combining together with the evidence of the zero-bias-peak of conductance,the nonlocal cross correlation predicted in this work can help to confirm the existence of the nonlocal MZMs.
文摘Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high portfolio losses (more general risk measure) based on the Cross - Entropy importance sampling is developed. This algorithm can easily be applied in any light- or heavy-tailed case without an extra adaptation. Besides, it does not loose in the performance in comparison to other known methods. A numerical study in both cases is performed and the variance reduction rate is compared with other known methods. The problem of VaR estimation using procedures for estimating the probability of high portfolio losses is also discussed.