Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of th...Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.展开更多
In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero...In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.展开更多
A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without PT-symmetry is studied.By analyzing the spectrum,we discovered that there still exists real-complex energy transition even if the inexistence...A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without PT-symmetry is studied.By analyzing the spectrum,we discovered that there still exists real-complex energy transition even if the inexistence of PT-symmetry breaking.By the inverse participation ratio,we constructed such a correspondence that pure real energies correspond to the extended states and complex energies correspond to the localized states,and this correspondence is precise and effective to detect the mobility edges.After investigating the topological properties,we arrived at a fact that the Majorana zero modes in this system are immune to the non-Hermiticity.展开更多
By means of critical behaviors of the dynamical fermion mass in four-fermion interaction models, we show by explicit calculations that when T = 0 the particle density will have a discontinuous jumping across the criti...By means of critical behaviors of the dynamical fermion mass in four-fermion interaction models, we show by explicit calculations that when T = 0 the particle density will have a discontinuous jumping across the critical chemical potential μ<SUB>c</SUB> in 2D and 3D Gross-Neveu (GN) model and these physically explain the first-order feature of the corresponding symmetry restoring phase transitions. For the second-order phase transitions in the 3D GN model when T → 0 and in 4D Nambu–Jona–Lasinio (NJL) model when T = 0, it is proven that the particle density itself will be continuous across μ<SUB>c</SUB> but its derivative over the chemical potential μ will have a discontinuous jumping. The results give a physical explanation of implications of the tricritical point in the 3D GN model. The discussions also show effectiveness of the critical analysis approach of phase transitions.展开更多
基金Project supported by the National Natural Science Foundation of China (Key Program) (No.10632050)
文摘Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274379)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.14XNLQ07)
文摘In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.
基金the National Natural Science Foundation of China(Grant Nos.11835011 and 12174346).
文摘A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without PT-symmetry is studied.By analyzing the spectrum,we discovered that there still exists real-complex energy transition even if the inexistence of PT-symmetry breaking.By the inverse participation ratio,we constructed such a correspondence that pure real energies correspond to the extended states and complex energies correspond to the localized states,and this correspondence is precise and effective to detect the mobility edges.After investigating the topological properties,we arrived at a fact that the Majorana zero modes in this system are immune to the non-Hermiticity.
基金The project supported by National Natural Science Foundation ot China
文摘By means of critical behaviors of the dynamical fermion mass in four-fermion interaction models, we show by explicit calculations that when T = 0 the particle density will have a discontinuous jumping across the critical chemical potential μ<SUB>c</SUB> in 2D and 3D Gross-Neveu (GN) model and these physically explain the first-order feature of the corresponding symmetry restoring phase transitions. For the second-order phase transitions in the 3D GN model when T → 0 and in 4D Nambu–Jona–Lasinio (NJL) model when T = 0, it is proven that the particle density itself will be continuous across μ<SUB>c</SUB> but its derivative over the chemical potential μ will have a discontinuous jumping. The results give a physical explanation of implications of the tricritical point in the 3D GN model. The discussions also show effectiveness of the critical analysis approach of phase transitions.