This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study ...This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.展开更多
Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph correspond...Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph corresponds to the different chemical properties of compounds.Let a,b be are two positive integers,andΓ(Z_(a)×Z_(b))be the zero-divisor graph of the commutative ring Z_(a)×Z_(b).In this article some direct questions have been answered that can be utilized latterly in different applications.This study starts with simple computations,leading to a quite complex ring theoretic problems to prove certain properties.The theory of finite commutative rings is useful due to its different applications in the fields of advanced mechanics,communication theory,cryptography,combinatorics,algorithms analysis,and engineering.In this paper we determine the distance-based topological polynomials and indices of the zero-divisor graph of the commutative ring Z_(p^(2))×Z_(q)(for p,q as prime numbers)with the help of graphical structure analysis.The study outcomes help in understanding the fundamental relation between ring-theoretic and graph-theoretic properties of a zero-divisor graphΓ(G).展开更多
In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those gra...In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those graphs whose diameters ≥ 1 and discussed six cases. This paper further discusses the other nine cases and also gives a complete characterization for the possible diameters for left Artin rings.展开更多
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that...We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.展开更多
Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exi...Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.展开更多
The line graph for the complement of the zero divisor graph for the ring of Gaussian integers modulo n is studied. The diameter, the radius and degree of each vertex are determined. Complete characterization of Hamilt...The line graph for the complement of the zero divisor graph for the ring of Gaussian integers modulo n is studied. The diameter, the radius and degree of each vertex are determined. Complete characterization of Hamiltonian, Eulerian, planer, regular, locally and locally connected is given. The chromatic number when is a power of a prime is computed. Further properties for and are also discussed.展开更多
A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgra...A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgraph of G induced on the vertex set V(G) / {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G=Г(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G* has at least two connected components. We prove that the diameter of the induced graph G* is two if Z(R)2 ≠{0}, Z(R)3 = {0} and Gc is connected. We determine the structure of R which has two distinct nonadjacent vertices a, fl C Z(R)*/{c} such that the ideal [N(a)N(β)]{0} is generated by only one element of Z(R)*/{c}. We also completely determine the correspondence between commutative rings and finite complete graphs Kn with some end vertices adjacent to a single vertex of Kn.展开更多
Let Pn be a path graph with n vertices, and let Fn = Pn ∪ {c}, where c is adjacent to all vertices of Pn. The resulting graph is called a fan-shaped graph. The corresponding zero-divisor semigroups have been complete...Let Pn be a path graph with n vertices, and let Fn = Pn ∪ {c}, where c is adjacent to all vertices of Pn. The resulting graph is called a fan-shaped graph. The corresponding zero-divisor semigroups have been completely determined by Tang et al. for n = 2, 3, 4 and by Wu et al. for n ≥ 6, respectively. In this paper, we study the case for n = 5, and give all the corresponding zero-divisor semigroups of Fn.展开更多
文摘This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.
文摘Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph corresponds to the different chemical properties of compounds.Let a,b be are two positive integers,andΓ(Z_(a)×Z_(b))be the zero-divisor graph of the commutative ring Z_(a)×Z_(b).In this article some direct questions have been answered that can be utilized latterly in different applications.This study starts with simple computations,leading to a quite complex ring theoretic problems to prove certain properties.The theory of finite commutative rings is useful due to its different applications in the fields of advanced mechanics,communication theory,cryptography,combinatorics,algorithms analysis,and engineering.In this paper we determine the distance-based topological polynomials and indices of the zero-divisor graph of the commutative ring Z_(p^(2))×Z_(q)(for p,q as prime numbers)with the help of graphical structure analysis.The study outcomes help in understanding the fundamental relation between ring-theoretic and graph-theoretic properties of a zero-divisor graphΓ(G).
基金Supported by the Natural Sciences Foundation of Guangxi Province(0575052, 0640070)Supported by the Innovation Project of Guangxi Graduate Education(2006106030701M05)Supported by the Scientific Research Foundation of Guangxi Educational Committee(200707LX233
文摘In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those graphs whose diameters ≥ 1 and discussed six cases. This paper further discusses the other nine cases and also gives a complete characterization for the possible diameters for left Artin rings.
基金Partially supported by the NSF (10071035) of China.
文摘We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.
文摘Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.
文摘The line graph for the complement of the zero divisor graph for the ring of Gaussian integers modulo n is studied. The diameter, the radius and degree of each vertex are determined. Complete characterization of Hamiltonian, Eulerian, planer, regular, locally and locally connected is given. The chromatic number when is a power of a prime is computed. Further properties for and are also discussed.
基金Supported by National Natural Science Foundation of China (Grant No. 10671122) the first author is supported by Youth Foundation of Shanghai (Grant No. sdl10017) and also partly supported by Natural Science Foundation of Shanghai (Grant No. 10ZR1412500) the second author is partly supported by STCSM (Grant No. 09XD1402500)
文摘A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgraph of G induced on the vertex set V(G) / {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G=Г(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G* has at least two connected components. We prove that the diameter of the induced graph G* is two if Z(R)2 ≠{0}, Z(R)3 = {0} and Gc is connected. We determine the structure of R which has two distinct nonadjacent vertices a, fl C Z(R)*/{c} such that the ideal [N(a)N(β)]{0} is generated by only one element of Z(R)*/{c}. We also completely determine the correspondence between commutative rings and finite complete graphs Kn with some end vertices adjacent to a single vertex of Kn.
基金Supported by the Guangxi Natural Science Foundation (Grant Nos.2010GXNSFB0130480991102+1 种基金2011GXNSFA018139)the Scientific Research Foundation of Guangxi Educational Committee (Grant No. 200911LX275)
文摘Let Pn be a path graph with n vertices, and let Fn = Pn ∪ {c}, where c is adjacent to all vertices of Pn. The resulting graph is called a fan-shaped graph. The corresponding zero-divisor semigroups have been completely determined by Tang et al. for n = 2, 3, 4 and by Wu et al. for n ≥ 6, respectively. In this paper, we study the case for n = 5, and give all the corresponding zero-divisor semigroups of Fn.
基金supported by the National Natural Science Foundation of China (10771095)the Guangxi Science Foundation(0832107,0991102)the Scientific Research Foundation of Guangxi Educational Committee (200707LX233)
基金Supported by National Natural Science Foundation(11161006)Guan-gxi Natural Science Foundation(2010GXNSFB013048,2011GXNSFA018139)Scientific Research Foundation of Guangxi Educational Committee(201012MS140)