This paper studies the proximate satellite interception guidance strategies where both the interceptor and target can perform orbital maneuvers with magnitude limited thrusts. This problem is regarded as a pursuit-eva...This paper studies the proximate satellite interception guidance strategies where both the interceptor and target can perform orbital maneuvers with magnitude limited thrusts. This problem is regarded as a pursuit-evasion game since satellites in both sides will try their best to capture or escape. In this game, the distance of these two players is small enough so that the highly nonlinear earth-centered gravitational dynamics can be reduced to the linear Clohessy-Wiltshire(CW) equations. The system is then simplified by introducing the zero effort miss variables. Saddle solution is formulated for the pursuit-evasion game and time-to-go is estimated similarly as that for the exoatmospheric interception. Then a vector guidance is derived to ensure that the interception can be achieved in the optimal time. The proposed guidance law is validated by numerical simulations.展开更多
A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in...A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in order to describe the special guidance requirements, the concept of zero effort miss vector is proposed and the dangerous area where there exists collision risk for safety consideration is defined. Secondly, the BPNG, which decouples the range control and direc- tion control, is designed in the line-of-sight (LOS) rotation coordinate system. The theoretical anal- ysis proves that BPNG meets guidance requirements quite well. Thirdly, for the consideration of fuel consumption, the optimal biased proportional navigation guidance (OBPNG) law is derived by solving the Schwartz inequality. Finally, simulation results show that BPNG is effective for the close approach with the ability of evading the dangerous area and OBPNG consumes less fuel compared with BPNG.展开更多
基金co-supported by the National Natural Science Foundation of China (Nos.61603115,91438202 and91638301)China Postdoctoral Science Foundation (No.2015M81455)+1 种基金the Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology of China (No.HIT.KLOF.MST.201601)the Heilongjiang Postdoctoral Fund of China (No.LBH-Z15085)
文摘This paper studies the proximate satellite interception guidance strategies where both the interceptor and target can perform orbital maneuvers with magnitude limited thrusts. This problem is regarded as a pursuit-evasion game since satellites in both sides will try their best to capture or escape. In this game, the distance of these two players is small enough so that the highly nonlinear earth-centered gravitational dynamics can be reduced to the linear Clohessy-Wiltshire(CW) equations. The system is then simplified by introducing the zero effort miss variables. Saddle solution is formulated for the pursuit-evasion game and time-to-go is estimated similarly as that for the exoatmospheric interception. Then a vector guidance is derived to ensure that the interception can be achieved in the optimal time. The proposed guidance law is validated by numerical simulations.
基金co-supported by the National Natural Science Foundation of China(No.11372345)the National Basic Research Program of China(No.2013CB733100)
文摘A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in order to describe the special guidance requirements, the concept of zero effort miss vector is proposed and the dangerous area where there exists collision risk for safety consideration is defined. Secondly, the BPNG, which decouples the range control and direc- tion control, is designed in the line-of-sight (LOS) rotation coordinate system. The theoretical anal- ysis proves that BPNG meets guidance requirements quite well. Thirdly, for the consideration of fuel consumption, the optimal biased proportional navigation guidance (OBPNG) law is derived by solving the Schwartz inequality. Finally, simulation results show that BPNG is effective for the close approach with the ability of evading the dangerous area and OBPNG consumes less fuel compared with BPNG.