We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the...We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.展开更多
Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive ...Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive laws does not hold in general. We introduce two ways in which matrix near-rings can be defined and discuss the structure of each. One is as given by Beildeman and the other is as defined by Meldrum. Beildeman defined his matrix near-rings as normal arrays under the operation of matrix multiplication and addition. He showed that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In this case it is not possible to obtain a matrix near-ring from a proper near-ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings over a near-ring as mappings from the direct sum of n copies of the additive group of the near-ring to itself. In this case it can be shown that a proper near-ring is obtained. We prove several properties, introduce some special matrices and show that a matrix notation can be introduced to make calculations easier, provided that n is small.展开更多
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f...This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.展开更多
In this paper we propose a new class of ternary Zero Correlation Zone (ZCZ) sequence sets based on binary ZCZ sequence sets construction. It is shown that the proposed ternary ZCZ sequence sets can reach the upper bou...In this paper we propose a new class of ternary Zero Correlation Zone (ZCZ) sequence sets based on binary ZCZ sequence sets construction. It is shown that the proposed ternary ZCZ sequence sets can reach the upper bound on the ZCZ sequences. The performance of the proposed sequences set in asynchronous Direct Sequence-Code Division Multiple Access (DS-CDMA) system is evaluated. In the simulation we used two types of channels: Additive White Gaussian Noise (AWGN) and frequency non-selective fading with AWGN noise. The proposed ternary ZCZ sequence sets show better results, in term of Bit Error Rate (BER), than Hayashi’s ternary ZCZ sequence sets.展开更多
There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin partic...There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.展开更多
In this paper, a new viewpoint of the division by zero z/0 = 0 in matrices is introduced and the results will show that the division by zero is our elementary and fundamental mathematics. New and practical meanings fo...In this paper, a new viewpoint of the division by zero z/0 = 0 in matrices is introduced and the results will show that the division by zero is our elementary and fundamental mathematics. New and practical meanings for many mathematical and physical formulas for the denominator zero cases may be given. Furthermore, a new space idea for the point at infinity for the Eucleadian plane is also introduced.展开更多
文摘We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.
文摘Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive laws does not hold in general. We introduce two ways in which matrix near-rings can be defined and discuss the structure of each. One is as given by Beildeman and the other is as defined by Meldrum. Beildeman defined his matrix near-rings as normal arrays under the operation of matrix multiplication and addition. He showed that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In this case it is not possible to obtain a matrix near-ring from a proper near-ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings over a near-ring as mappings from the direct sum of n copies of the additive group of the near-ring to itself. In this case it can be shown that a proper near-ring is obtained. We prove several properties, introduce some special matrices and show that a matrix notation can be introduced to make calculations easier, provided that n is small.
文摘This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.
文摘In this paper we propose a new class of ternary Zero Correlation Zone (ZCZ) sequence sets based on binary ZCZ sequence sets construction. It is shown that the proposed ternary ZCZ sequence sets can reach the upper bound on the ZCZ sequences. The performance of the proposed sequences set in asynchronous Direct Sequence-Code Division Multiple Access (DS-CDMA) system is evaluated. In the simulation we used two types of channels: Additive White Gaussian Noise (AWGN) and frequency non-selective fading with AWGN noise. The proposed ternary ZCZ sequence sets show better results, in term of Bit Error Rate (BER), than Hayashi’s ternary ZCZ sequence sets.
文摘There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.
文摘In this paper, a new viewpoint of the division by zero z/0 = 0 in matrices is introduced and the results will show that the division by zero is our elementary and fundamental mathematics. New and practical meanings for many mathematical and physical formulas for the denominator zero cases may be given. Furthermore, a new space idea for the point at infinity for the Eucleadian plane is also introduced.