To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design...To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.展开更多
Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase erro...Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.展开更多
Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this ...Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial rob...In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial robot,which has six degree of freedom(6-DOF).The whole adaptive force control algorithm is implemented on TMS320C30 micro-processor whose instruction cycle is 60ns.The results of the force control experiments prove that AZPEF force control makes robot have good robustness and quick response ability.展开更多
基金This project was supported by the Aeronautics Foundation of China (00E51022).
文摘To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.
基金This project is supported by Aeronautics Foundation of China (No.00- E51022).
文摘Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.
文摘Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.
文摘In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial robot,which has six degree of freedom(6-DOF).The whole adaptive force control algorithm is implemented on TMS320C30 micro-processor whose instruction cycle is 60ns.The results of the force control experiments prove that AZPEF force control makes robot have good robustness and quick response ability.