期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation and Experimental Study of Heat-fluid-solid Coupling of Double Flapper-nozzle Servo Valve 被引量:18
1
作者 ZHAO Jianhua ZHOU Songlin +1 位作者 LU Xianghui GAO Dianrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1030-1038,共9页
The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val... The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve. 展开更多
关键词 double flapper-nozzle servo valve heat-fluid-solid coupling numerical simulation warpage-deformation clamping stagnation zero position leakage
下载PDF
Design and Parameter Optimization of Zero Position Code Considering Diffraction Based on Deep Learning Generative Adversarial Networks
2
作者 Shengtong Wang Linbin Luo Xinghui Li 《Nanomanufacturing and Metrology》 EI 2024年第1期15-27,共13页
Absolute measurement has consistently been the primary focus in the development of precision linear and angular displace-ment measurements.The scheme design of binary zero position codes is an important factor for abs... Absolute measurement has consistently been the primary focus in the development of precision linear and angular displace-ment measurements.The scheme design of binary zero position codes is an important factor for absolute measurement.Designing and optimizing high-bit zero position codes with over 100 bits face considerable challenges.Simultaneously,the working parameters of zero position codes[unit code width(b),distance(d),and yaw angle(α)]remarkably affect their post-installation performance,particularly in absolute positioning and limit code application in multi-degree-of-freedom measurement schemes.This study addresses these challenges by proposing a design method for zero position codes that considers diffraction based on generative adversarial networks and aims to explore a design with increased efficiency and accuracy as well as optimization for high-bit zero position codes.Additionally,the tolerance range of zero positioning per-formance for each working parameter is examined.By leveraging the adversarial network structure,this study generates the optimization of a 150-bit code and processes the tests of the zero position code by using simulation results.The following working parameter ranges for code design are recommended on the basis of theoretical and experimental results:b greater than 10μm,d andαwithin 1000μm and 3490μrad,and avoidance of intervals with sharp changes in the full width at half maximum.The proposed code design and parameter optimization lay a solid foundation for research and engineering appli-cations in absolute measurement field and have considerable potential for generalization and wide applicability. 展开更多
关键词 Absolute measurement zero position code Deep learning Generative adversarial networks Tolerance range Parameter optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部