Zero-energy state is investigated by taking infinitesimal energy and observing its uncertainty in space-time, adopting quantum mechanics. In this paper, the uncertainty in conventional quantum mechanics is found to be...Zero-energy state is investigated by taking infinitesimal energy and observing its uncertainty in space-time, adopting quantum mechanics. In this paper, the uncertainty in conventional quantum mechanics is found to be interpreted as freedom in space-time, which results in possibility of time travel and space transition of the zero-energy state, which could be information or mind. The wave function of a physical system composed of multiple particles or wave-packets is examined and found that it can be arbitrarily changed by grouping by observers. It leads to an idea that even infinitesimal energy or wave-packets in a heavy physical system may separately exist and it has the infinite freedom of space-time.展开更多
The goal of zero-shot recognition is to classify classes it has never seen before, which needs to build a bridge between seen and unseen classes through semantic embedding space. Therefore, semantic embedding space le...The goal of zero-shot recognition is to classify classes it has never seen before, which needs to build a bridge between seen and unseen classes through semantic embedding space. Therefore, semantic embedding space learning plays an important role in zero-shot recognition. Among existing works, semantic embedding space is mainly taken by user-defined attribute vectors. However, the discriminative information included in the user-defined attribute vector is limited. In this paper, we propose to learn an extra latent attribute space automatically to produce a more generalized and discriminative semantic embedded space. To prevent the bias problem, both user-defined attribute vector and latent attribute space are optimized by adversarial learning with auto-encoders. We also propose to reconstruct semantic patterns produced by explanatory graphs, which can make semantic embedding space more sensitive to usefully semantic information and less sensitive to useless information. The proposed method is evaluated on the AwA2 and CUB dataset. These results show that our proposed method achieves superior performance.展开更多
相对于单天线GNSS接收机,阵列GNSS接收机具有空间分辨能力,当干扰信号与卫星信号在时域频域上产生混叠时,其能够从空域上对干扰信号进行抑制,具有更强的干扰抑制能力。但阵列GNSS接收机相对于单天线GNSS接收机需要更多的阵元,随着阵元...相对于单天线GNSS接收机,阵列GNSS接收机具有空间分辨能力,当干扰信号与卫星信号在时域频域上产生混叠时,其能够从空域上对干扰信号进行抑制,具有更强的干扰抑制能力。但阵列GNSS接收机相对于单天线GNSS接收机需要更多的阵元,随着阵元数目的增加,系统成本也相应的增加,限制了阵列GNSS接收机的应用范围。双天线GNSS接收机既具有空域抗干扰能力,同时又具有价格低廉的特点,是一种较好的折中选择。对于单一的连续波干扰,其能够产生很好的抑制效果,但是当连续波干扰中混有脉冲干扰时,由于受到自由度的限制,双天线GNSS接收机无法对混合干扰进行有效抑制,进而影响接收机的正常工作。针对于上述问题,本文提出一种新的混合干扰抑制算法。首先利用脉冲的时域特征,对待处理信号进行分块处理,确保至少有一个数据块中不含有脉冲干扰,随后对不含脉冲干扰的数据块,使用空时最小功率(Space-Time Adaptive Processing Power Inversion,STAP-PI)算法得到最优权值,然后利用该权值抑制原信号中的连续波干扰。最后,对处理之后信号中残余的脉冲干扰进行时域置零处理,从而达到抑制混合干扰的目的。仿真实验和实采实验结果均证明了所提算法的有效性。展开更多
Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily e...Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily exist in the direct parallel converters. In this paper, the average model of parallel interleaved inverters system to analyze the circulation current is shown, and the cross current is relevant to DC-bus voltage and the overlap time of zero vectors in the switching period. Based on this observation, a discontinuous space vector modulation without using zero vectors (000) is eliminate and suppress the zero-sequence current to entire system. Finally, the effectiveness of modulation strategy is verified by the simulations in this paper.展开更多
There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin partic...There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.展开更多
文摘Zero-energy state is investigated by taking infinitesimal energy and observing its uncertainty in space-time, adopting quantum mechanics. In this paper, the uncertainty in conventional quantum mechanics is found to be interpreted as freedom in space-time, which results in possibility of time travel and space transition of the zero-energy state, which could be information or mind. The wave function of a physical system composed of multiple particles or wave-packets is examined and found that it can be arbitrarily changed by grouping by observers. It leads to an idea that even infinitesimal energy or wave-packets in a heavy physical system may separately exist and it has the infinite freedom of space-time.
文摘The goal of zero-shot recognition is to classify classes it has never seen before, which needs to build a bridge between seen and unseen classes through semantic embedding space. Therefore, semantic embedding space learning plays an important role in zero-shot recognition. Among existing works, semantic embedding space is mainly taken by user-defined attribute vectors. However, the discriminative information included in the user-defined attribute vector is limited. In this paper, we propose to learn an extra latent attribute space automatically to produce a more generalized and discriminative semantic embedded space. To prevent the bias problem, both user-defined attribute vector and latent attribute space are optimized by adversarial learning with auto-encoders. We also propose to reconstruct semantic patterns produced by explanatory graphs, which can make semantic embedding space more sensitive to usefully semantic information and less sensitive to useless information. The proposed method is evaluated on the AwA2 and CUB dataset. These results show that our proposed method achieves superior performance.
文摘相对于单天线GNSS接收机,阵列GNSS接收机具有空间分辨能力,当干扰信号与卫星信号在时域频域上产生混叠时,其能够从空域上对干扰信号进行抑制,具有更强的干扰抑制能力。但阵列GNSS接收机相对于单天线GNSS接收机需要更多的阵元,随着阵元数目的增加,系统成本也相应的增加,限制了阵列GNSS接收机的应用范围。双天线GNSS接收机既具有空域抗干扰能力,同时又具有价格低廉的特点,是一种较好的折中选择。对于单一的连续波干扰,其能够产生很好的抑制效果,但是当连续波干扰中混有脉冲干扰时,由于受到自由度的限制,双天线GNSS接收机无法对混合干扰进行有效抑制,进而影响接收机的正常工作。针对于上述问题,本文提出一种新的混合干扰抑制算法。首先利用脉冲的时域特征,对待处理信号进行分块处理,确保至少有一个数据块中不含有脉冲干扰,随后对不含脉冲干扰的数据块,使用空时最小功率(Space-Time Adaptive Processing Power Inversion,STAP-PI)算法得到最优权值,然后利用该权值抑制原信号中的连续波干扰。最后,对处理之后信号中残余的脉冲干扰进行时域置零处理,从而达到抑制混合干扰的目的。仿真实验和实采实验结果均证明了所提算法的有效性。
文摘Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily exist in the direct parallel converters. In this paper, the average model of parallel interleaved inverters system to analyze the circulation current is shown, and the cross current is relevant to DC-bus voltage and the overlap time of zero vectors in the switching period. Based on this observation, a discontinuous space vector modulation without using zero vectors (000) is eliminate and suppress the zero-sequence current to entire system. Finally, the effectiveness of modulation strategy is verified by the simulations in this paper.
文摘There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.