Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have ...Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.展开更多
Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of...Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of diagnostic technologies for earlier detection of disease and its recurrence.Three-dimensional(3 D)organic-inorganic hybrid lead halide perovskites are promising for direct X-ray detection-they show improved sensitivity compared to conventional X-ray detectors.However,their high and unstable dark current,caused by ion migration and high dark carrier concentration in the 3 D hybrid perovskites,limits their performance and long-term operation stability.Here we report ultrasensitive,stable X-ray detectors made using zero-dimensional(0 D)methylammonium bismuth iodide perovskite(MA3Bi2I9)single crystals.The 0 D crystal structure leads to a high activation energy(Ea)for ion migration(0.46 e V)and is also accompanied by a low dark carrier concentration(~10^6 cm^-3).The X-ray detectors exhibit sensitivity of 10,620μC Gy-1 air cm-2,a limit of detection(Lo D)of 0.62 nG yairs-1,and stable operation even under high applied biases;no deterioration in detection performance was observed following sensing of an integrated X-ray irradiation dose of^23,800 m Gyair,equivalent to>200,000 times the dose required for a single commercial X-ray chest radiograph.Regulating the ion migration channels and decreasing the dark carrier concentration in perovskites provide routes for stable and ultrasensitive X-ray detectors.展开更多
The unique structure of zero-dimensional(0D)perovskite-analogues has attracted a great amount of research interest in recent years.To date,the current compositional library of 0D perovskites is largely limited to the ...The unique structure of zero-dimensional(0D)perovskite-analogues has attracted a great amount of research interest in recent years.To date,the current compositional library of 0D perovskites is largely limited to the lead-based Cs4PbX6(X=Cl,Br,and I)systems.In this work,we report a new synthesis of lead-free 0D Cs3BiX6(X=Cl,Br)perovskite-analogue nanocrystals(NCs)with a uniform cubic shape.We observe a broad photoluminescence peak centered at 390 nm for the 0D Cs3BiCl6 NCs at low temperatures.This feature originates from a self-trapped exciton mechanism.In situ thermal stability studies show that Cs3BiX6 NCs remain stable upon heating up to 200°C without crystal structural degradation.Moreover,we demonstrate that the Cs3BiX6 NCs can transform into other bismuth-based perovskite-analogues via facile anion exchange or metal ion insertion reactions.Our study presented here offers the opportunity for further understanding of the structure-property relationship of 0D perovskite-analogue materials,leading toward their future optoelectronic applications.展开更多
Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to...Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to compute RUR of zero-dimensional ideals. In this paper, we will present a new algorithm to compute Polynomial Univariate Representation (PUR) of zero-dimensional ideals. The new algorithm is based on some interesting properties of Grobner basis. The new algorithm also provides a method for testing separating elements.展开更多
With the increasing demand for high-quality pork,more nutritional substances have been studied for the regulation of meat quality.Zero-dimensional fullerenes(C60)can modulate the biological behavior of a variety of ce...With the increasing demand for high-quality pork,more nutritional substances have been studied for the regulation of meat quality.Zero-dimensional fullerenes(C60)can modulate the biological behavior of a variety of cell lines and animals.In this study,we report the biological effects of C60 on finishing pigs at different concentrations.A total of 24 barrows(Duroc×Large White×Landrace),with an average body weight of 21.01±0.98 kg,were divided into 3 groups and each treated daily with C60(100 or 200 mg per kg feed)or a control diet until the end of the experiment.Our results showed that dietary C60 supplementation improved flesh color,marbling scores,and flavor amino acid contents of longissimus dorsi(LD)of growing-finishing pigs(P<0.05).C60 improved meat quality by regulating lipid metabolism and muscle fiber morphology by mediating the expression of genes,L-lactic dehydrogenase(LDH),myosin heavy chain(MyHC)IIa,MyHCIIb,peroxisome proliferator-activated receptor γ(PPARγ),and fatty acid transport protein 1(FATP1)(P<0.05).Moreover,C60 substantially promoted the mRNA expression of antioxidant enzyme genes(P<0.05),which also contributed to improving meat quality.These findings have important implications for the application of C60 in the livestock industry,especially for improving the meat quality of fattening pigs.展开更多
New kinds of strongly zero-dimensional locales are introduced and characterized, which are different from Johnstone's, and almost all the topological properties for strongly zero-dimensional spaces have the pointl...New kinds of strongly zero-dimensional locales are introduced and characterized, which are different from Johnstone's, and almost all the topological properties for strongly zero-dimensional spaces have the pointloss localic forms. Particularly. the Stone-Cech compactification of a strongly zero-diluensional locale is stongly zero-dimensional.展开更多
Because of their moderate penetration power,β-rays(high-energy electrons)are a useful signal for evaluating the surface contamination of nuclear radiation.However,the development ofβ-ray scintillators,which convert ...Because of their moderate penetration power,β-rays(high-energy electrons)are a useful signal for evaluating the surface contamination of nuclear radiation.However,the development ofβ-ray scintillators,which convert the absorbed high-energy electrons into visible photons,is hindered by the limitations of materials selection.Herein,we report two highly luminescent zerodimensional(0D)organic-inorganic lead-free metal halide hybrids,(C_(13)H_(30)N)_(2)MnBr_(4)and(C_(19)H_(34)N)_(2)MnBr_(4),as scintillators exhibiting efficientβ-ray scintillation.These hybrid scintillators combine the superior properties of organic and inorganic components.For example,organic components that contain light elements C,H,and N enhance the capturing efficiency ofβparticles;isolated inorganic[MnBr_(4)]2−tetrahedrons serve as highly localized emitting centers to emit intense radioluminescence(RL)underβ-ray excitation.Both hybrids show a narrow-band green emission peaked at 518 nm with photoluminescence quantum efficiencies(PLQEs)of 81.3%for(C_(13)H_(30)N)_(2)MnBr_(4)and 86.4%for(C_(19)H_(34)N)_(2)MnBr_(4),respectively.To enable the solution processing of this promising metal halide hybrid,we successfully synthesized(C_(13)H_(30)N)_(2)MnBr_(4)colloidal nanocrystals for the first time.Being excited byβ-rays,(C_(13)H_(30)N)_(2)MnBr_(4)scintillators show a linear response toβ-ray dose rate over a broad range from 400 to 2,800 Gy·s^(−1),and also display robust radiation resistance that 80%of the initial RL intensity can be maintained after an ultrahigh accumulated radiation dose of 240 kGy.This work will open up a new route for the development ofβ-ray scintillators.展开更多
Triangular decomposition with different properties has been used for various types of problem solving.In this paper,the concepts of pure chains and square-free pure triangular decomposition(SFPTD)of zero-dimensional p...Triangular decomposition with different properties has been used for various types of problem solving.In this paper,the concepts of pure chains and square-free pure triangular decomposition(SFPTD)of zero-dimensional polynomial systems are defined.Because of its good properties,SFPTD may be a key way to many problems related to zero-dimensional polynomial systems.Inspired by the work of Wang(2016)and of Dong and Mou(2019),the authors propose an algorithm for computing SFPTD based on Gr¨obner bases computation.The novelty of the algorithm is that the authors make use of saturated ideals and separant to ensure that the zero sets of any two pure chains are disjoint and every pure chain is square-free,respectively.On one hand,the authors prove the arithmetic complexity of the new algorithm can be single exponential in the square of the number of variables,which seems to be among the rare complexity analysis results for triangular-decomposition methods.On the other hand,the authors show experimentally that,on a large number of examples in the literature,the new algorithm is far more efficient than a popular triangular-decomposition method based on pseudodivision,and the methods based on SFPTD for real solution isolation and for computing radicals of zero-dimensional ideals are very efficient.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51972130)the Startup Fund of Huazhong University of Science and Technologythe Director Fund of Wuhan National Laboratory for Optoelectronics
文摘Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.
基金supported by the National Natural Science Foundation of China(Grant nos.21773218,61974063)the Sichuan Province(Grant no.2018JY0206)the China Academy of Engineering Physics(Grant no.YZJJLX2018007)。
文摘Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of diagnostic technologies for earlier detection of disease and its recurrence.Three-dimensional(3 D)organic-inorganic hybrid lead halide perovskites are promising for direct X-ray detection-they show improved sensitivity compared to conventional X-ray detectors.However,their high and unstable dark current,caused by ion migration and high dark carrier concentration in the 3 D hybrid perovskites,limits their performance and long-term operation stability.Here we report ultrasensitive,stable X-ray detectors made using zero-dimensional(0 D)methylammonium bismuth iodide perovskite(MA3Bi2I9)single crystals.The 0 D crystal structure leads to a high activation energy(Ea)for ion migration(0.46 e V)and is also accompanied by a low dark carrier concentration(~10^6 cm^-3).The X-ray detectors exhibit sensitivity of 10,620μC Gy-1 air cm-2,a limit of detection(Lo D)of 0.62 nG yairs-1,and stable operation even under high applied biases;no deterioration in detection performance was observed following sensing of an integrated X-ray irradiation dose of^23,800 m Gyair,equivalent to>200,000 times the dose required for a single commercial X-ray chest radiograph.Regulating the ion migration channels and decreasing the dark carrier concentration in perovskites provide routes for stable and ultrasensitive X-ray detectors.
基金support from Brown University startup funds and the National Science Foundation(OIA-1538893)K.H.-K.is supported by the U.S.Department of Education GAANN research fellowship(P200A150037)。
文摘The unique structure of zero-dimensional(0D)perovskite-analogues has attracted a great amount of research interest in recent years.To date,the current compositional library of 0D perovskites is largely limited to the lead-based Cs4PbX6(X=Cl,Br,and I)systems.In this work,we report a new synthesis of lead-free 0D Cs3BiX6(X=Cl,Br)perovskite-analogue nanocrystals(NCs)with a uniform cubic shape.We observe a broad photoluminescence peak centered at 390 nm for the 0D Cs3BiCl6 NCs at low temperatures.This feature originates from a self-trapped exciton mechanism.In situ thermal stability studies show that Cs3BiX6 NCs remain stable upon heating up to 200°C without crystal structural degradation.Moreover,we demonstrate that the Cs3BiX6 NCs can transform into other bismuth-based perovskite-analogues via facile anion exchange or metal ion insertion reactions.Our study presented here offers the opportunity for further understanding of the structure-property relationship of 0D perovskite-analogue materials,leading toward their future optoelectronic applications.
基金supported by National Key Basic Research Project of China(Grant No. 2011CB302400)National Natural Science Foundation of China (Grant Nos. 10971217,60821002/F02)
文摘Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to compute RUR of zero-dimensional ideals. In this paper, we will present a new algorithm to compute Polynomial Univariate Representation (PUR) of zero-dimensional ideals. The new algorithm is based on some interesting properties of Grobner basis. The new algorithm also provides a method for testing separating elements.
基金the Innovation Team of Key areas of the Ministry of Science and Technology,Science and Technology Leadership Program of Hunan Province(2019RS3020)Special Fund for Key Program of Science and Technology of Yunnan Province(202102AE090046)。
文摘With the increasing demand for high-quality pork,more nutritional substances have been studied for the regulation of meat quality.Zero-dimensional fullerenes(C60)can modulate the biological behavior of a variety of cell lines and animals.In this study,we report the biological effects of C60 on finishing pigs at different concentrations.A total of 24 barrows(Duroc×Large White×Landrace),with an average body weight of 21.01±0.98 kg,were divided into 3 groups and each treated daily with C60(100 or 200 mg per kg feed)or a control diet until the end of the experiment.Our results showed that dietary C60 supplementation improved flesh color,marbling scores,and flavor amino acid contents of longissimus dorsi(LD)of growing-finishing pigs(P<0.05).C60 improved meat quality by regulating lipid metabolism and muscle fiber morphology by mediating the expression of genes,L-lactic dehydrogenase(LDH),myosin heavy chain(MyHC)IIa,MyHCIIb,peroxisome proliferator-activated receptor γ(PPARγ),and fatty acid transport protein 1(FATP1)(P<0.05).Moreover,C60 substantially promoted the mRNA expression of antioxidant enzyme genes(P<0.05),which also contributed to improving meat quality.These findings have important implications for the application of C60 in the livestock industry,especially for improving the meat quality of fattening pigs.
基金Supported by the NSF of Chinathe SFEM of China the Project of "Excellent Scholars Crossing the Centuries" of the Ministry of Education of China
文摘New kinds of strongly zero-dimensional locales are introduced and characterized, which are different from Johnstone's, and almost all the topological properties for strongly zero-dimensional spaces have the pointloss localic forms. Particularly. the Stone-Cech compactification of a strongly zero-diluensional locale is stongly zero-dimensional.
基金the National Natural Science Foundation of China(Nos.61974052,11774239,and 61827815)the Fund from Science,Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20190809180013252)the Key Research and Development Program of Hubei Province(No.YFXM2020000188).
文摘Because of their moderate penetration power,β-rays(high-energy electrons)are a useful signal for evaluating the surface contamination of nuclear radiation.However,the development ofβ-ray scintillators,which convert the absorbed high-energy electrons into visible photons,is hindered by the limitations of materials selection.Herein,we report two highly luminescent zerodimensional(0D)organic-inorganic lead-free metal halide hybrids,(C_(13)H_(30)N)_(2)MnBr_(4)and(C_(19)H_(34)N)_(2)MnBr_(4),as scintillators exhibiting efficientβ-ray scintillation.These hybrid scintillators combine the superior properties of organic and inorganic components.For example,organic components that contain light elements C,H,and N enhance the capturing efficiency ofβparticles;isolated inorganic[MnBr_(4)]2−tetrahedrons serve as highly localized emitting centers to emit intense radioluminescence(RL)underβ-ray excitation.Both hybrids show a narrow-band green emission peaked at 518 nm with photoluminescence quantum efficiencies(PLQEs)of 81.3%for(C_(13)H_(30)N)_(2)MnBr_(4)and 86.4%for(C_(19)H_(34)N)_(2)MnBr_(4),respectively.To enable the solution processing of this promising metal halide hybrid,we successfully synthesized(C_(13)H_(30)N)_(2)MnBr_(4)colloidal nanocrystals for the first time.Being excited byβ-rays,(C_(13)H_(30)N)_(2)MnBr_(4)scintillators show a linear response toβ-ray dose rate over a broad range from 400 to 2,800 Gy·s^(−1),and also display robust radiation resistance that 80%of the initial RL intensity can be maintained after an ultrahigh accumulated radiation dose of 240 kGy.This work will open up a new route for the development ofβ-ray scintillators.
基金supported by National Key R&D Program of China under Grant No.2022YFA1005102the National Natural Science Foundation of China under Grant No.61732001。
文摘Triangular decomposition with different properties has been used for various types of problem solving.In this paper,the concepts of pure chains and square-free pure triangular decomposition(SFPTD)of zero-dimensional polynomial systems are defined.Because of its good properties,SFPTD may be a key way to many problems related to zero-dimensional polynomial systems.Inspired by the work of Wang(2016)and of Dong and Mou(2019),the authors propose an algorithm for computing SFPTD based on Gr¨obner bases computation.The novelty of the algorithm is that the authors make use of saturated ideals and separant to ensure that the zero sets of any two pure chains are disjoint and every pure chain is square-free,respectively.On one hand,the authors prove the arithmetic complexity of the new algorithm can be single exponential in the square of the number of variables,which seems to be among the rare complexity analysis results for triangular-decomposition methods.On the other hand,the authors show experimentally that,on a large number of examples in the literature,the new algorithm is far more efficient than a popular triangular-decomposition method based on pseudodivision,and the methods based on SFPTD for real solution isolation and for computing radicals of zero-dimensional ideals are very efficient.