期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H–Pb–F
1
作者 薛文明 李金 +3 位作者 何朝宇 欧阳滔 戴雄英 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期414-418,共5页
Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimension... Rashba spin splitting(RSS)and quantum spin Hall effect(QSHE)have attracted enormous interest due to their great significance in the application of spintronics.In this work,we theoretically proposed a new two-dimensional(2D)material H–Pb–F with coexistence of giant RSS and quantum spin Hall effec by using the ab initio calculations.Our results show that H–Pb–F possesses giant RSS(1.21 eV·A)and the RSS can be tuned up to 4.16 e V·A by in-plane biaxial strain,which is a huge value among 2D materials.Furthermore,we also noticed that H–Pb–F is a 2D topological insulator(TI)duo to the strong spin–orbit coupling(SOC)interaction,and the large topological gap is up to 1.35 e V,which is large enough for for the observation of topological edge states at room temperature.The coexistence of giant RSS and quantum spin Hall effect greatly broadens the potential application of H–Pb–F in the field of spintronic devices. 展开更多
关键词 COEXISTENCE Rashba spin splitting quantum spin Hall effect spin–orbit coupling
下载PDF
Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
2
作者 梁红 宋浩元 +2 位作者 李宇博 于迪 付淑芳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期372-381,共10页
We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by ... We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection. 展开更多
关键词 spin splitting hyperbolic material vortex beam orbital angular momentum
下载PDF
Numerical simulation of influence of material parameters on splitting spinning of aluminum alloy 被引量:2
3
作者 黄亮 杨合 +1 位作者 詹梅 胡莉巾 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第3期674-681,共8页
During the splitting spinning process, the material parameters of disk blank have a significant effect on the determination of forming parameters and the quality of deformed blank. The influence laws of material param... During the splitting spinning process, the material parameters of disk blank have a significant effect on the determination of forming parameters and the quality of deformed blank. The influence laws of material parameters, including yield stress, hardening exponent and elastic modulus, on splitting spinning force, splitting spinning moment, degree of inhomogeneous deformation and quality of flange (average thickness and average deviation angle) were investigated by 3D-FE numerical simulation based on elasto-plastic dynamic explicit FEM under ABAQUS/Explicit environment. The results show that, the splitting spinning force and the splitting spinning moment increase with the increase of yield stress, hardening exponent and elastic modulus. The degree of inhomogeneous deformation increases with the decrease of yield stress and hardening exponent and the increase of elastic modulus. The average thickness of flange increases with the decrease of yield stress and the increase of hardening exponent and elastic modulus. The average deviation angle of upper surface increases with the increase of yield stress and the decrease of hardening exponent and elastic modulus. The average deviation angle of lower surface increases with the decrease of yield stress, hardening exponent and elastic modulus. Meanwhile, the corresponding variation ranges are given. The achievements may serve as an important guide for selecting the reasonable processing parameters of splitting spinning based on different aluminum alloys, and are very significant for optimum design and precision control of the splitting spinning process. 展开更多
关键词 劈裂强度 材料参数 FEM 可塑性
下载PDF
Progress in manipulating spin polarization for solar hydrogen production
4
作者 Qian Yang Xin Tong Zhiming Wang 《Materials Reports(Energy)》 EI 2024年第1期43-57,共15页
Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelect... Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided. 展开更多
关键词 spin polarization Solar energy conversion Photocatalytic hydrogen production Photoelectrochemical water splitting
下载PDF
Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin-orbit interaction and Zeeman splitting
5
作者 薛惠杰 吕天全 +3 位作者 张红晨 尹海涛 催莲 贺泽龙 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期371-378,共8页
The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Ah... The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only. 展开更多
关键词 thermospin effect spin Seebeck coefficient Zeeman splitting Rashba spin-orbit inter-action
下载PDF
Zero-field splitting parameters and local structures for tetragonal Cr^(2+) centers in Cr^(2+)-doped ZnSe semiconductors
6
作者 卢婷婷 邝小渝 +3 位作者 李辉 李洪洪 武志燕 毛爱杰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期466-469,共4页
The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the ene... The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the energy matrix) method. On the basis of this, the local lattice distortions, the ZFS parameters D, a, F and the optical spectrum for Cr2+ ions doped into ZnSe are theoretically investigated, and the contributions of the spin singlets have been taken into account. The calculated ZFS parameters are in good agreement with the experimental values. From our calculations, the tetragonal distortion parameters AR = 0.091A and Aθ = 4.28° of Cr2+ in ZnSe are acquired, and the results suggest that there exists a tetragonal expansion distortion for the local lattice structure of (CrSe4)6- clusters in ZnSe crystals. The influence of the spin singlets on ZFS parameters is also discussed, indicating that the contributions to ZFS parameters a and F cannot be ignored. 展开更多
关键词 zero-field splitting parameters optical spectroscopy local lattice structure Cr2+-doped ZnSe com-plex system
下载PDF
Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe_(3)GeTe_(2) van der Waals heterostructures
7
作者 Xiuya Su Helin Qin +2 位作者 Zhongbo Yan Dingyong Zhong Donghui Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期488-496,共9页
Recently, two-dimensional van der Waals(vd W) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polariz... Recently, two-dimensional van der Waals(vd W) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polarized electronic structures of antimonene/Fe_(3)GeTe_(2)vdW heterostructures were investigated through the first-principles calculations. Owing to the magnetic proximity effect, the spin splitting appears at the conduction-band minimum(CBM) and the valence-band maximum(VBM) of the antimonene. A low-energy effective Hamiltonian was proposed to depict the spin splitting. It was found that the spin splitting can be modulated by means of applying an external electric field, changing interlayer distance or changing stacking configuration. The spin splitting energy at the CBM monotonously increases as the external electric field changes from-5 V/nm to 5 V/nm, while the spin splitting energy at the VBM almost remains the same. Meanwhile,as the interlayer distance increases, the spin splitting energies at the CBM and VBM both decrease. The different stacking configurations can also induce different spin splitting energies at the CBM and VBM. Our work demonstrates that the spin splitting of antimonene in this heterostructure is not singly dependent on the nearest Sb–Fe distance, which indicates that magnetic proximity effect in heterostructures may be modulated by multiple factors, such as hybridization of electronic states and the local electronic environment. The results enrich the fundamental understanding of the magnetic proximity effect in two-dimensional vdW heterostructures. 展开更多
关键词 first-principles calculations antimonene/Fe_(3)GeTe_(2)vdW heterostructures magnetic proximity effect spin splitting
下载PDF
Determination of spin-orbit splitting Δ_0 of valence band at Γ for gallium phosphide nanoparticles using fluorescence and infrared spectroscopes
8
作者 ZHANG Zhaochun LI Jianlin 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期510-515,共6页
The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infra... The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV. 展开更多
关键词 spin-orbit splitting NANOPARTICLES gallium phosphide FLUORESCENCE infrared absorption
下载PDF
Evidence of Decisive Effect of Crystal-field Splitting in Spin-State Transition
9
作者 王雪黎 袁松柳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期952-956,共5页
Based on the first-principle calculations for 3D Hofmann-like spin-crossover (SCO) compound [Fe(C4H4N2){Pt(CN)4}], the discrepancy of transition mechanism is clarified with quantitatively distinguishable evidenc... Based on the first-principle calculations for 3D Hofmann-like spin-crossover (SCO) compound [Fe(C4H4N2){Pt(CN)4}], the discrepancy of transition mechanism is clarified with quantitatively distinguishable evidence of second order phase transition. It shows that the stretch around 0.2 ? of Fe-N bond length leads to the continuous structure expansion, as the energy splitting ΔEHL between low-spin and high-spin states reduces from 2.554 2 eV to -0.327 8 eV, and the crystal-field splitting (CFS) is reduced from 1.845 8 eV to 0.420 8 eV meanwhile. A physics image relating the calculations results with CFS in the frame of ligand-field theory is presented, which manifests that CFS is a necessary parameter to be introduced directly in the theory of spin-state transition. 展开更多
关键词 spin-crossover crystal-field splitting first-principle calculations
下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
10
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 two-dimensional altermagnetic materials altermagnetism spin splitting first-principles calculations
下载PDF
难变形金属小模数齿形件电流辅助分形旋压成形方法研究
11
作者 夏琴香 范旭东 +1 位作者 周昊阳 肖刚锋 《塑性工程学报》 CAS CSCD 北大核心 2024年第4期193-199,共7页
针对难变形金属小模数齿形件采用传统滚齿及插齿方法制备时,存在材料利用率低、强韧性不足等问题,提出采用分形旋压方法实现此类小模数齿形件的完整近净成形。以模数为0.3的30CrMnSiA合金结构钢小模数齿形件为研究对象,设计制作了难变... 针对难变形金属小模数齿形件采用传统滚齿及插齿方法制备时,存在材料利用率低、强韧性不足等问题,提出采用分形旋压方法实现此类小模数齿形件的完整近净成形。以模数为0.3的30CrMnSiA合金结构钢小模数齿形件为研究对象,设计制作了难变形金属小模数齿形件分形旋压成形工艺装备,并基于旋压成形试验进给研究了渐进式进给、主轴正反转进给和间歇式进给3种不同成形方式及有/无电流辅助条件对难变形金属小模数齿形件分形旋压的影响规律。结果表明:采用渐进式进给成形方式时,旋压成形缺陷最少,但所获得的轮齿饱和度仅为70.2%;采用正反转式成形方式时,成齿区易出现预成形齿顶与旋轮轮齿啮合错位而导致被两次分形的缺陷;采用间歇式进给式成形方式时,成齿区齿顶部分出现大量毛刺;采用渐进式成形方式,相同试验条件下,通入脉冲电流后,材料塑性变形能力显著提升,轮齿饱和度提高到95.7%。采用电流辅助分形旋压成形获得的小模数齿形件齿廓偏差为0.029 mm、齿距偏差为0.015 mm。 展开更多
关键词 难变形金属 小模数齿形件 电流辅助 分形旋压 成形方法
下载PDF
难变形金属小模数齿形件电流辅助分形旋压成形工艺优化
12
作者 夏琴香 范旭东 +1 位作者 周昊阳 肖刚锋 《精密成形工程》 北大核心 2024年第7期66-75,共10页
目的针对30CrMnSiA合金结构钢小模数齿形件电流辅助分形旋压成形工艺,探究工艺参数对小模数齿形件成形质量的影响规律,分析工艺参数间的相关性,获得优化后的工艺参数组合。方法选取小模数齿形件齿廓偏差、齿距偏差、轮齿饱和度为成形质... 目的针对30CrMnSiA合金结构钢小模数齿形件电流辅助分形旋压成形工艺,探究工艺参数对小模数齿形件成形质量的影响规律,分析工艺参数间的相关性,获得优化后的工艺参数组合。方法选取小模数齿形件齿廓偏差、齿距偏差、轮齿饱和度为成形质量响应指标,以电流密度、占空比以及旋轮进给速度为影响因素,设计响应面试验方案;根据有限元模拟结果建立成形质量回归预测模型,分析电流密度、占空比以及旋轮进给速度对小模数齿形件成形质量的影响规律,计算获得最优的参数组合并进行试验验证。结果电流密度、脉冲占空比、旋轮进给速度对小模数齿形件成形质量有显著影响,成形质量随着电流密度与占空比的升高而升高,随旋轮进给速度的升高而先升高后降低;且电流密度与旋轮进给速度、脉冲占空比与旋轮进给速度在对轮齿饱和度的影响上有一定的交互性;通过建立的回归模型预测得到的优化工艺参数如下:电流密度为17.5 A/mm2、脉冲占空比为40%、旋轮进给速度为0.6 mm/min。结论回归模型预测值与试验值的相对误差小于8%,说明所构建的成形质量回归预测模型是准确的,利用优化后的参数可制备出成形质量良好的小模数齿形件。 展开更多
关键词 小模数齿形件 电流辅助成形 分形旋压 响应面法 工艺优化
下载PDF
熔纺双组分超细纤维成型工艺及其应用研究进展 被引量:1
13
作者 曹阳 宋兵 +2 位作者 张恒 王亮 钱晓明 《丝绸》 CAS CSCD 北大核心 2024年第3期66-76,共11页
熔纺双组分超细纤维由于其原料和成型技术的组合多样性而备受青睐。然而,在现有的制备工艺中,熔纺双组分超细纤维存在如能耗大、难以细旦化和污染环境等问题,限制了其在实际生产和高质应用领域的进一步发展。并且在实际的生产过程中,不... 熔纺双组分超细纤维由于其原料和成型技术的组合多样性而备受青睐。然而,在现有的制备工艺中,熔纺双组分超细纤维存在如能耗大、难以细旦化和污染环境等问题,限制了其在实际生产和高质应用领域的进一步发展。并且在实际的生产过程中,不同的原料选择、组件使用及工艺调控等因素都对熔纺双组分超细纤维成型效果影响显著。因此,合理调控熔纺双组分超细纤维成型过程中各阶段影响因素对其综合性能进一步提升具有重大意义。为更全面理解熔纺双组分超细纤维的本质,本文以桔瓣型纤维和海岛型纤维为研究基体,探究了熔纺双组分超细纤维的纺丝成型机理及其影响因素;阐述了熔纺双组分超细纤维多样的开纤工艺(机械开纤、化学开纤和热能开纤);归结了熔纺双组分超细纤维在合成革、空气过滤和医疗卫生等材料领域的应用;最后对熔纺双组分超细纤维广阔的发展前景进行了展望。 展开更多
关键词 双组分超细纤维 双组分熔融纺丝 纺丝机理 机械开纤 热能开纤 超细纤维合成革
下载PDF
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:1
14
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment spin state transition Orbitals hybridization Water splitting
下载PDF
熔融双组分超细纤维成纤技术研究进展
15
作者 朵永超 宋兵 +2 位作者 张如全 许秋歌 钱晓明 《纺织学报》 EI CAS CSCD 北大核心 2024年第8期54-64,共11页
为深入探究熔融双组分复合纤维原纤化的超细纤维成形技术,介绍了共混纺丝和共轭纺丝2种复合纺丝技术及其在生产超细纤维时的原料及工艺,具体阐述了海岛型复合纤维和裂离型复合纤维开纤工艺及特点,分析了聚合物及工艺对复合纤维生产超细... 为深入探究熔融双组分复合纤维原纤化的超细纤维成形技术,介绍了共混纺丝和共轭纺丝2种复合纺丝技术及其在生产超细纤维时的原料及工艺,具体阐述了海岛型复合纤维和裂离型复合纤维开纤工艺及特点,分析了聚合物及工艺对复合纤维生产超细纤维的影响。综述了熔融复合纤维原纤化用到的化学溶剂开纤、水溶开纤、机械开纤等开纤技术。概述了用熔融复合纺丝技术生产的超细纤维材料在合成革、过滤与分离、医用防护、卫生健康等领域中的应用,提出了复合纺丝技术生产超细纤维的发展方向,并指出复合纤维有望通过成形技术实现原料多元化、纤维细旦化、材料功能化等方面的不断发展和创新,将推动相关产业朝着更加可持续和环保的方向发展。 展开更多
关键词 双组分纤维 超细纤维 复合纺丝 海岛型纤维 裂离型纤维 开纤技术
下载PDF
Spin-orbit interaction in coupled quantum wells 被引量:1
16
作者 郝亚非 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期472-476,共5页
We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to ... We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well. 展开更多
关键词 spin-orbit interaction coupled quantum wells spin splitting
下载PDF
Manipulating Spin Polarization of Defected Co_(3)O_(4)for Highly Effi cient Electrocatalysis 被引量:1
17
作者 Yue Li Tianzuo Wang +7 位作者 Muhammad Asim Lun Pan Rongrong Zhang Zhen-Feng Huang Zhichao Chen Chengxiang Shi Xiangwen Zhang Ji-Jun Zou 《Transactions of Tianjin University》 EI CAS 2022年第3期163-173,共11页
Electrocatalytic water splitting is limited by kinetics-sluggish oxygen evolution,in which the activity of catalysts depends on their electronic structure.However,the infl uence of electron spin polarization on cataly... Electrocatalytic water splitting is limited by kinetics-sluggish oxygen evolution,in which the activity of catalysts depends on their electronic structure.However,the infl uence of electron spin polarization on catalytic activity is ambiguous.Herein,we successfully regulate the spin polarization of Co_(3)O_(4)catalysts by tuning the concentration of cobalt defects from 0.8 to 14.5%.X-ray absorption spectroscopy spectra and density functional theory calculations confi rm that the spin polarization of Co_(3)O_(4)is positively correlated with the concentration of cobalt defects.Importantly,the enhanced spin polarization can increase hydroxyl group absorption to signifi cantly decrease the Gibbs free energy change value of the OER rate-determining step and regulate the spin polarization of oxygen species through a spin electron-exchange process to easily produce triplet-state O_(2),which can obviously increase electrocatalytic OER activity.In specifi c,Co_(3)O_(4)-50 with 14.5%cobalt defects exhibits the highest spin polarization and shows the best normalized OER activity.This work provides an important strategy to increase the water splitting activity of electrocatalysts via the rational regulation of electron spin polarization. 展开更多
关键词 Co_(3)O_(4) Cobalt defect Oxygen evolution reaction spin polarization Transition metals Water splitting
下载PDF
Spin-orbit coupling and zero-field splitting of the high-spin ferric enzyme-substrate complex:Protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate 被引量:1
18
作者 Lü LingLing ZHU YuanCheng +4 位作者 WANG XiaoFang ZUO GuoFang GUO Feng ZHAO SuRui WANG YongCheng 《Chinese Science Bulletin》 SCIE EI CAS 2013年第6期627-633,共7页
We used density functional calculations to investigate the electronic origins of the magnetic properties of the high-spin ferric enzyme-substrate complex protocatechuate 3,4-dioxygenase(3,4-PCD).The calculated g-tenso... We used density functional calculations to investigate the electronic origins of the magnetic properties of the high-spin ferric enzyme-substrate complex protocatechuate 3,4-dioxygenase(3,4-PCD).The calculated g-tensors show that ligand-to-metal charge transfer transitions are from the protocatechuate(PCA) and Tyr408 orbitals to the Fe d orbitals,which lead to x-and y-polarized transitions.These polarized transitions require a spin-orbit coupling(SOC) matrix element in the z-direction,Lz(z=z'),resulting in a g z value of 2.0158,significantly deviating from 2.0023.A large zero-field splitting parameter value of+1.147cm-1 is due to △S =-1 spin-orbit mixing with the quartet states for the sextet ground state,accounting for around 73% of the SOC contribution.The SOC matrix elements indicate that the high-spin d 5 system Fe(Ⅲ),3,4-PCD-PCA is a weak spin-crossover compound with an SOC of 31.56 cm-1. 展开更多
关键词 自旋轨道耦合 双加氧酶 原儿茶酸 零场分裂 高自旋 复合物 底物 密度泛函计算
原文传递
Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin-orbit interactions
19
《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期347-356,共10页
In this study, we investigate theoretically the effect of spin-orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magne... In this study, we investigate theoretically the effect of spin-orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magnetic field. Highly accurate numerical calculations have been carried out using a finite element method. Our results reveal that the interplay between the spin-orbit interaction and the effective magnetic field significantly modifies the band structure, producing additional subband extrema and energy gaps. Competing effects between external field and spin-orbit interactions introduce comp|ex features in spin texturing owing to the couplings in energy subbands. We obtain that spatia~ modulation of the spin density along the wire width can be considerably modified by the spin-orbit coupling strength, magnetic field and charge carrier concentration. 展开更多
关键词 spin—orbit coupling zeeman splitting quantum wire spin texture
下载PDF
Theoretical study of spin-orbit coupling and zero-field splitting in the spin-forbidden two-state reaction between cobaltacyclopentadiene and isocyanate
20
作者 Lingling L Xiaofang Wang +3 位作者 Yuancheng Zhu Xinwen Liu Kun Yuan Yongcheng Wang 《Chinese Science Bulletin》 SCIE EI CAS 2014年第3期286-296,共11页
The two-state reaction mechanism of CpCo(C_4H_4)with isocyanate on the triplet and singlet potential energy surfaces has been investigated at the B3LYP level.A study is described for the computation of spin-orbit coup... The two-state reaction mechanism of CpCo(C_4H_4)with isocyanate on the triplet and singlet potential energy surfaces has been investigated at the B3LYP level.A study is described for the computation of spin-orbit coupling of triplet state of the minimal energy crossing point(CP)with their singlet states and of the zerofield splitting(ZFS)parameters of the triplet states,including the full one-and two-electron terms of the BreitPauli Hamiltonian.There are two key crossing points along this two-state reaction pathway.The first crossing point—CP2 exists near^1B.The reacting system will change its spin multiplicity from the triplet state to the singlet state near this crossing region.Although the spin-orbit coupling interaction and ZFS D-tensor of the CP2 region are very strong,the reaction system will occur the reverse intersystem crossing from T_1 to S_0.Therefore,its spin-flip efficiency may be lower.The second crossing point,CP3will again change its spin multiplicity from the singlet state to the triplet state in the Co-Cr bond activation pathway,leading to a decrease in the barrier height of^1TS(CF)from19.5 to 9.5 kcal/mol(1cal=4.182 J),and the efficiency of intersystem crossing from S_0 to T_1 is high because the larger spin-orbit coupling(SOC)matrix elements will result in the overpopulations of the three sublevels of T_1(3.30×10^(-1),3.32×10^(-1),and 3.38×10^(-1),respectively). 展开更多
关键词 轨道耦合 异氰酸酯 零场分裂 反应机理 自旋 B3LYP 三重态 交叉点
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部