In December of 2010 NIST selected five SHA-3 finalists - BLAKE, Grcstl, JH, Keccak, and Skein to advance to the third (and final) round of the SHA-3 competition. At present most specialists and scholars focus on the...In December of 2010 NIST selected five SHA-3 finalists - BLAKE, Grcstl, JH, Keccak, and Skein to advance to the third (and final) round of the SHA-3 competition. At present most specialists and scholars focus on the design and the attacks on these hash functions. However, it is very significant to study some properties of their primitives and underlying permutations. Because some properties reflect the pseudo-randomness of the structures. Moreover, they help us to find new cryptanalysis for some block cipher structures. In this paper, we analyze the resistance of JH and Grcstl-512 against structural properties built on integral distinguishers. And then 31.5 (out of 42) rounds integral distinguishers for JH compression function and 11.5 (out of 14) rounds for Grcstl-512 compression function are presented.展开更多
Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections...Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60873259 and No. 60903212)Knowledge Innovation Project of the Chinese Academy of Sciences
文摘In December of 2010 NIST selected five SHA-3 finalists - BLAKE, Grcstl, JH, Keccak, and Skein to advance to the third (and final) round of the SHA-3 competition. At present most specialists and scholars focus on the design and the attacks on these hash functions. However, it is very significant to study some properties of their primitives and underlying permutations. Because some properties reflect the pseudo-randomness of the structures. Moreover, they help us to find new cryptanalysis for some block cipher structures. In this paper, we analyze the resistance of JH and Grcstl-512 against structural properties built on integral distinguishers. And then 31.5 (out of 42) rounds integral distinguishers for JH compression function and 11.5 (out of 14) rounds for Grcstl-512 compression function are presented.
基金the National Key Research and Development Program of China(Grant No.2020YFA0309702)NSAF(Grant No.U2130205)+3 种基金the National Natural Science Foundation of China(Grant Nos.62101597,61605248,and 61505261)the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies。
文摘Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation.