Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stabl...Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stable and high capacity cathode materials due to their complicated reaction mechanism and slow Zn-ion transport kinetics.This study reports a unique 3 D ’flower-like’ zinc cobaltite(ZnCo_(2)O_(4-x)) with enriched oxygen vacancies as a new cathode material for aqueous ZIBs.Computational calculations reveal that the presence of oxygen vacancies significantly enhances the electronic conductivity and accelerates Zn^(2+) diffusion by providing enlarged channels.The as-fabricated batteries present an impressive specific capacity of 148.3 mAh g^(-1) at the current density of 0.05 A g^(-1),high energy(2.8 Wh kg^(-1)) and power densities(27.2 W kg^(-1)) based on the whole device,which outperform most of the reported aqueous ZIBs.Moreover,a flexible solid-state pouch cell was demonstrated,which delivers an extremely stable capacity under bending states.This work demonstrates that the performance of Zn-ion storage can be effectively enhanced by tailoring the atomic structure of cathode materials,guiding the development of low-cost and eco-friendly energy storage materials.展开更多
Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the se...Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2^- radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51873198,51503184 and 21703248)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20000000)+1 种基金the Engineering and Physical Sciences Research Council(EPSRC,EP/R023581/1)the RSC Mobility Grant(M19-7656)and the STFC Batteries Network(ST/R006873/1)。
文摘Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stable and high capacity cathode materials due to their complicated reaction mechanism and slow Zn-ion transport kinetics.This study reports a unique 3 D ’flower-like’ zinc cobaltite(ZnCo_(2)O_(4-x)) with enriched oxygen vacancies as a new cathode material for aqueous ZIBs.Computational calculations reveal that the presence of oxygen vacancies significantly enhances the electronic conductivity and accelerates Zn^(2+) diffusion by providing enlarged channels.The as-fabricated batteries present an impressive specific capacity of 148.3 mAh g^(-1) at the current density of 0.05 A g^(-1),high energy(2.8 Wh kg^(-1)) and power densities(27.2 W kg^(-1)) based on the whole device,which outperform most of the reported aqueous ZIBs.Moreover,a flexible solid-state pouch cell was demonstrated,which delivers an extremely stable capacity under bending states.This work demonstrates that the performance of Zn-ion storage can be effectively enhanced by tailoring the atomic structure of cathode materials,guiding the development of low-cost and eco-friendly energy storage materials.
文摘Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2^- radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.