The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out t...The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.展开更多
Heavy particulate matter (PM) pollution and high energy consumption are the bottlenecks of hydrometallurgy, especially in the electrolysis process. Therefore, an urgent need is to explore PM reduction methods with pro...Heavy particulate matter (PM) pollution and high energy consumption are the bottlenecks of hydrometallurgy, especially in the electrolysis process. Therefore, an urgent need is to explore PM reduction methods with production performance co-benefits. This study presents three PM reduction methods based on controlling operating parameters, i.e., lowering electrolyte temperature, H2SO4 concentration, and current density of the cathode. The optimized conditions were also investigated using the response surface methodology to balance the PM reduction effect and Zn production. The results showed that lowering electrolyte temperature is the most efficient, with an 89.0% reduction in the PM generation flux (GFPM). Reducing H2SO4 concentration led to the minimum side effects on the current efficiency of Zn deposition (CEZn) or power consumption (PC). With the premise of non-deteriorating CEZn and PC, GFPM can be reduced by 86.3% at the optimal condition (electrolyte temperature = 295 K, H2SO4 = 110 g/L, current density = 373 A/m^(2)). In addition, the reduction mechanism was elucidated by comprehensively analyzing bubble characteristics, electrochemical reactions, and surface tension. Results showed that lower electrolyte temperature inhibited the oxygen evolution reaction (OER) and compressed gas volume. Lower H2SO4 concentration inhibited the hydrogen evolution reaction (HER) and reduced electrolyte surface tension. Lower current density inhibited both OER and HER by decreasing the reaction current. The inhibited gas evolutions reduced the microbubbles’ number and size, thereby reducing GFPM. These results may provide energy-efficient PM reduction methods and theoretical hints of exploring cleaner PM reduction approaches for industrial electrolysis.展开更多
The complex structure of the electrolytic cells in water splitting leads to the high cost of green hydrogen production.The strategy of two-step electrolysis provides a new avenue for the generation of green hydrogen i...The complex structure of the electrolytic cells in water splitting leads to the high cost of green hydrogen production.The strategy of two-step electrolysis provides a new avenue for the generation of green hydrogen in a mode completely different fromtraditional technologies.However,the reported two-step methods are all based on solid redox couples,which have limited capacity.A new two-stepwater-splitting strategy has been developed by combining ZnSO_(4)electrolysis with zinc dissolution.The effects of temperature and concentration on the process were investigated,and the results showed that at 80℃in 3 M ZnSO_(4),Zn electrolysis exhibited the highest thermoneutral energy efficiency of 55.5%at a current density of 40 mA/cm2.The following Zn dissolution for hydrogen production showed a quantum yield of 100%.Furthermore,this mode was successfully applied to a flow cell,which means that the capacity is adjustable.展开更多
基金Project (51174229) supported by the National Natural Science Foundation of China
文摘The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.
基金supported by the National Natural Science Foundation of China(No.22106081)the Natural Science of Foundation of Shandong Province,China(No.ZR202103040646)+2 种基金the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(China)(No.20K09ESPCT)the Major Basic Research Projects of Natural Science Foundation of Shandong Province(China)(No.ZR2020KE025)the Fundamental Research Funds for the Central Universities(China)(No.22120220166).
文摘Heavy particulate matter (PM) pollution and high energy consumption are the bottlenecks of hydrometallurgy, especially in the electrolysis process. Therefore, an urgent need is to explore PM reduction methods with production performance co-benefits. This study presents three PM reduction methods based on controlling operating parameters, i.e., lowering electrolyte temperature, H2SO4 concentration, and current density of the cathode. The optimized conditions were also investigated using the response surface methodology to balance the PM reduction effect and Zn production. The results showed that lowering electrolyte temperature is the most efficient, with an 89.0% reduction in the PM generation flux (GFPM). Reducing H2SO4 concentration led to the minimum side effects on the current efficiency of Zn deposition (CEZn) or power consumption (PC). With the premise of non-deteriorating CEZn and PC, GFPM can be reduced by 86.3% at the optimal condition (electrolyte temperature = 295 K, H2SO4 = 110 g/L, current density = 373 A/m^(2)). In addition, the reduction mechanism was elucidated by comprehensively analyzing bubble characteristics, electrochemical reactions, and surface tension. Results showed that lower electrolyte temperature inhibited the oxygen evolution reaction (OER) and compressed gas volume. Lower H2SO4 concentration inhibited the hydrogen evolution reaction (HER) and reduced electrolyte surface tension. Lower current density inhibited both OER and HER by decreasing the reaction current. The inhibited gas evolutions reduced the microbubbles’ number and size, thereby reducing GFPM. These results may provide energy-efficient PM reduction methods and theoretical hints of exploring cleaner PM reduction approaches for industrial electrolysis.
基金financially supported by Natural Science Foundation of Beijing Municipality(grant no.8222074)the Ministry of Education of the People’s Republic of China(grant no.20222034)the Fundamental Research Funds for the Central Universities.
文摘The complex structure of the electrolytic cells in water splitting leads to the high cost of green hydrogen production.The strategy of two-step electrolysis provides a new avenue for the generation of green hydrogen in a mode completely different fromtraditional technologies.However,the reported two-step methods are all based on solid redox couples,which have limited capacity.A new two-stepwater-splitting strategy has been developed by combining ZnSO_(4)electrolysis with zinc dissolution.The effects of temperature and concentration on the process were investigated,and the results showed that at 80℃in 3 M ZnSO_(4),Zn electrolysis exhibited the highest thermoneutral energy efficiency of 55.5%at a current density of 40 mA/cm2.The following Zn dissolution for hydrogen production showed a quantum yield of 100%.Furthermore,this mode was successfully applied to a flow cell,which means that the capacity is adjustable.