The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A no...The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A novel selective reduction roasting?leaching process was proposed to separate zinc and iron from zinc leaching residue which contains zinc ferrite. The thermodynamic analysis was employed to determine the predominant range of Fe3O4 and ZnO during reduction roasting process of zinc ferrite. Based on the result of thermodynamic calculation, we found thatV(CO)/V(CO+CO2) ratio is a key factor determining the phase composition in the reduction roasting product of zinc ferrite. In the range ofV(CO)/V(CO+CO2) ratio between 2.68% and 36.18%, zinc ferrite is preferentially decomposed into Fe3O4 and ZnO. Based on thermogravimetric (TG) analysis, the optimal conditions for reduction roasting of zinc ferrite are determined as follows: temperature 700?750 °C, volume fraction of CO 6% and V(CO)/V(CO+CO2) ratio 30%. Based on the above results, zinc leaching residue rich in zinc ferrite was roasted and the roasted product was leached by acid solution. It is found that zinc extraction rate in zinc leaching residue reaches up to 70% and iron extraction rate is only 18.4%. The result indicates that zinc and iron can be effectively separated from zinc leaching residue.展开更多
Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental acti...Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.展开更多
Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and...Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.展开更多
Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environme...Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue.展开更多
The feasibility of leaching and recovery of zinc from zinc leaching residue (ZLR) based on a membrane filter press (MFP) was investigated. Experimental results show that zinc calcines with particle sizes of less t...The feasibility of leaching and recovery of zinc from zinc leaching residue (ZLR) based on a membrane filter press (MFP) was investigated. Experimental results show that zinc calcines with particle sizes of less than 106 μm and chambers of widths of 30 mm are appropriate for establishing uniform filter cakes to obtain acceptable leaching and recovery results. The leaching of zinc from ZLR performed via washing at 90 to 96 ℃ for 90 min with spent electrolyte using a MFP results in a zinc extraction rate of 97%, and almost all of the zinc leached are recovered after water washing with MFP, thereby avoiding any loss in the ZLR. Compared with the traditional hot concentrated acid leaching process, the process based on MFP as a leaching reactor is able not only to ensure a high extraction rate but also to reduce the leaching time. Moreover, the thickening, pulping, second leaching, washing, filtering and pressing could be integrated and realized using a single MFP.展开更多
Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study propo...Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.展开更多
Zinc leaching residue(ZLR),produced from traditional zinc hydrometallurgy process,is not only a hazardous waste but also a potential valuable solid.The combination of sulfate roasting and water leaching was employed t...Zinc leaching residue(ZLR),produced from traditional zinc hydrometallurgy process,is not only a hazardous waste but also a potential valuable solid.The combination of sulfate roasting and water leaching was employed to recover the valuable metals from ZLR.The ZLR was initially roasted with ferric sulfate at640°C for1h with ferric sulfate/zinc ferrite mole ratio of1.2.In this process,the valuable metals were efficiently transformed into water soluble sulfate,while iron remains as ferric oxide.Thereafter,water leaching was conducted to extract the valuable metals sulfate for recovery.The recovery rates of zinc,manganese,copper,cadmium and iron were92.4%,93.3%,99.3%,91.4%and1.1%,respectively.A leaching toxicity test for ZLR was performed after water leaching.The results indicated that the final residue was effectively detoxified and all of the heavy metal leaching concentrations were under the allowable limit.展开更多
In this paper, we conduct research on the development trend of Zinc leaching residue and the construction of environment friendly system. To further strengthen concentration degree of the chemical industry, improve th...In this paper, we conduct research on the development trend of Zinc leaching residue and the construction of environment friendly system. To further strengthen concentration degree of the chemical industry, improve the production efficiency and utilization rate of emissions, realize the comprehensive utilization of energy development and the green development. In China' s zinc smelting industry, the use of most of the zinc smelting raw materials contain a small amount of the cobalt, zinc in the process of leaching into the zinc sulfate solution, as a harmful effect of the zinc impurities. For zinc sulfate leaching solution cobalt purification, most of the factories are using zinc powder replacement purification method, the output of the purification of zinc slag in the vast majority of zinc with small part of cadmium and a small amount of nickel, cobalt, copper, manganese and so on. This paper proposes the novel systematic method of the Zinc leaching residue re-use that will promote the further development of the green industry.展开更多
High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),...High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),16.1 wt.%Zn,and 7.4 wt.%Pb.Thermodynamic analysis shows that metallic vapor of Zn and Pb can be easily generated from the zinc leaching residue at 1150-1250°C inside the rotary kiln.Viscosities and melting points of 13 slag compositions were analyzed and three slag compositions(47wt.%SiO_(2)-23wt.%CaO-30wt.%FeO,40wt.%SiO_(2)-28wt.%CaO-32wt.%FeO,and 40wt.%SiO_(2)-30wt.%CaO-30wt.%FeO)possessed the desirable physical properties,with the melting point and viscosity in the range of 1150-1280°C and 0.2-0.5 Pa·s,respectively.The industrial tests show that adopting the optimized slag composition can contribute to very high recovery rates of Zn and Pb(97.3%for Zn and 94.5%for Pb),corresponding to slags with very low average contents of Zn and Pb(0.51 wt.%Zn and 0.45 wt.%Pb).The National-Standard leaching tests of the water-quenched slags result in 1.82 mg/L Zn,~0.01 mg/L Cu,0.0004 mg/L As,~0.01 mg/L Cd,0.08 mg/L Pb,and~0.02 mg/L Hg in the leachate,verifying the detoxification of the zinc leaching residue at the same time.展开更多
To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation,the reaction behaviors of Pb and Zn sulfates ...To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation,the reaction behaviors of Pb and Zn sulfates during this process were investigated.Chemical analysis showed that the transformation ratios of PbSO4 and ZnSO4 could reach 65.51%and 52.12%,respectively,after reduction roasting,and the introduction of a sulfidation agent could improve the transformation ratios of these sulfates.scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)revealed that temperature obviously affects the particle size,crystal growth,and morphology of the artificial Pb and Zn sulfide minerals.Particle size analysis demonstrated that the particle size of the materials increases after roasting.Flotation tests revealed that a flotation concentrate composed of 12.01wt%Pb,27.78wt%Zn,and 6.975×10^(−2)wt%Ag with recoveries of 60.54%,29.24%,and 57.64%,respectively,could be obtained after roasting.展开更多
基金Project(2011AA061001)supported by the National High-tech Research and Development Program of ChinaProject(2014FJ1011)supported by the Major Science and Technology Project of Hunan Province,China
文摘The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A novel selective reduction roasting?leaching process was proposed to separate zinc and iron from zinc leaching residue which contains zinc ferrite. The thermodynamic analysis was employed to determine the predominant range of Fe3O4 and ZnO during reduction roasting process of zinc ferrite. Based on the result of thermodynamic calculation, we found thatV(CO)/V(CO+CO2) ratio is a key factor determining the phase composition in the reduction roasting product of zinc ferrite. In the range ofV(CO)/V(CO+CO2) ratio between 2.68% and 36.18%, zinc ferrite is preferentially decomposed into Fe3O4 and ZnO. Based on thermogravimetric (TG) analysis, the optimal conditions for reduction roasting of zinc ferrite are determined as follows: temperature 700?750 °C, volume fraction of CO 6% and V(CO)/V(CO+CO2) ratio 30%. Based on the above results, zinc leaching residue rich in zinc ferrite was roasted and the roasted product was leached by acid solution. It is found that zinc extraction rate in zinc leaching residue reaches up to 70% and iron extraction rate is only 18.4%. The result indicates that zinc and iron can be effectively separated from zinc leaching residue.
基金Project(50925417) supported by the National Natural Science Funds for Distinguished Young Scholar of ChinaProject(2010AA065203) supported by the High Technology Research and Development Program of China+2 种基金Project(2010-609) Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(ncet-10-0840) supported by Program for New Century Excellent Talents in UniversityProject(2012FJ1080) supported by Key Projects of Science and Technology of Hunan Province,China
文摘Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.
基金Project(2011AA061001)supported by the Hi-Tech Research and Development Program of ChinaProject(50830301)supported by theKey Program of National Natural Science Foundation of ChinaProject(50925417)supported by the National Science Fund for Distinguished Young Scientists of China
文摘Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.
基金Project(2012FJ1010)supported by the Key Project of Science and Technology of Hunan ProvinceChina+2 种基金Project(51474247)supported by the National Natural Science Foundation of ChinaProject(2012GS430201)supported by the Science and Technology Program for Public WellbeingChina
文摘Zinc neutral leaching residue(ZNLR) from hydrometallurgical zinc smelting processing can be determined as hazardous intermediate containing considerable amounts of Cd and Zn which have great threats to the environment. The ZNLR contained approximately 35.99% Zn, 15.93% Fe and 0.26% Cd, and Cd mainly existed as ferrites in the ZNLR in this research. Reductive acid leaching of ZNLR was investigated. The effects of hydrazine sulfate concentration, initial sulfuric acid concentration, temperature, duration and liquid-to-solid ratio on the extraction of Cd, Zn and Fe were examined. The extraction efficiencies of Cd, Zn and Fe reached 90.81%, 95.83% and 94.19%, respectively when the leaching parameters were fixed as follows: hydrazine sulfate concentration, 33.3 g/L; sulfuric acid concentration, 80 g/L; temperature, 95 °C; duration of leaching, 120 min; liquid-to-solid ratio, 10 m L/g and agitation, 400 r/min. XRD and SEM-EDS analyses of the leaching residue confirmed that lead sulfate(Pb SO4) and hydrazinium zinc sulfate((N2H5)2Zn(SO4)2) were the main phases remaining in the reductive leaching residue.
文摘The feasibility of leaching and recovery of zinc from zinc leaching residue (ZLR) based on a membrane filter press (MFP) was investigated. Experimental results show that zinc calcines with particle sizes of less than 106 μm and chambers of widths of 30 mm are appropriate for establishing uniform filter cakes to obtain acceptable leaching and recovery results. The leaching of zinc from ZLR performed via washing at 90 to 96 ℃ for 90 min with spent electrolyte using a MFP results in a zinc extraction rate of 97%, and almost all of the zinc leached are recovered after water washing with MFP, thereby avoiding any loss in the ZLR. Compared with the traditional hot concentrated acid leaching process, the process based on MFP as a leaching reactor is able not only to ensure a high extraction rate but also to reduce the leaching time. Moreover, the thickening, pulping, second leaching, washing, filtering and pressing could be integrated and realized using a single MFP.
基金Project(2018YFC1900305)supported by the National Key R&D Program of ChinaProject(51825403)supported by the National Science Foundation for Distinguished Young Scholars,China+1 种基金Projects(51634010,51474247,51904354)supported by the National Natural Science Foundation of ChinaProject(2019SK2291)supported by the Key Research and Development Program of Hunan Province,China。
文摘Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.
基金Project(2014FJ1011)supported by Key Project of Science and Technology of Hunan Province,ChinaProject(201509050)supported by Program for Special Scientific Research Projects of National Public Welfare Industry
文摘Zinc leaching residue(ZLR),produced from traditional zinc hydrometallurgy process,is not only a hazardous waste but also a potential valuable solid.The combination of sulfate roasting and water leaching was employed to recover the valuable metals from ZLR.The ZLR was initially roasted with ferric sulfate at640°C for1h with ferric sulfate/zinc ferrite mole ratio of1.2.In this process,the valuable metals were efficiently transformed into water soluble sulfate,while iron remains as ferric oxide.Thereafter,water leaching was conducted to extract the valuable metals sulfate for recovery.The recovery rates of zinc,manganese,copper,cadmium and iron were92.4%,93.3%,99.3%,91.4%and1.1%,respectively.A leaching toxicity test for ZLR was performed after water leaching.The results indicated that the final residue was effectively detoxified and all of the heavy metal leaching concentrations were under the allowable limit.
文摘In this paper, we conduct research on the development trend of Zinc leaching residue and the construction of environment friendly system. To further strengthen concentration degree of the chemical industry, improve the production efficiency and utilization rate of emissions, realize the comprehensive utilization of energy development and the green development. In China' s zinc smelting industry, the use of most of the zinc smelting raw materials contain a small amount of the cobalt, zinc in the process of leaching into the zinc sulfate solution, as a harmful effect of the zinc impurities. For zinc sulfate leaching solution cobalt purification, most of the factories are using zinc powder replacement purification method, the output of the purification of zinc slag in the vast majority of zinc with small part of cadmium and a small amount of nickel, cobalt, copper, manganese and so on. This paper proposes the novel systematic method of the Zinc leaching residue re-use that will promote the further development of the green industry.
基金the funding support from the National Natural Science Foundation of China (Nos. 51804221, 51874101)the National Key R&D Program of China (No. 2019YFF0217102)the China Postdoctoral Science Foundation (Nos. 2018M642906, 2019T120684)
文摘High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),16.1 wt.%Zn,and 7.4 wt.%Pb.Thermodynamic analysis shows that metallic vapor of Zn and Pb can be easily generated from the zinc leaching residue at 1150-1250°C inside the rotary kiln.Viscosities and melting points of 13 slag compositions were analyzed and three slag compositions(47wt.%SiO_(2)-23wt.%CaO-30wt.%FeO,40wt.%SiO_(2)-28wt.%CaO-32wt.%FeO,and 40wt.%SiO_(2)-30wt.%CaO-30wt.%FeO)possessed the desirable physical properties,with the melting point and viscosity in the range of 1150-1280°C and 0.2-0.5 Pa·s,respectively.The industrial tests show that adopting the optimized slag composition can contribute to very high recovery rates of Zn and Pb(97.3%for Zn and 94.5%for Pb),corresponding to slags with very low average contents of Zn and Pb(0.51 wt.%Zn and 0.45 wt.%Pb).The National-Standard leaching tests of the water-quenched slags result in 1.82 mg/L Zn,~0.01 mg/L Cu,0.0004 mg/L As,~0.01 mg/L Cd,0.08 mg/L Pb,and~0.02 mg/L Hg in the leachate,verifying the detoxification of the zinc leaching residue at the same time.
基金the National Natural Science Foundation of China(No.51964027)the Yunnan Province Applied Basic Research Project,China(No.2017FB084)+1 种基金the Foundation of Yunnan’s Education Ministry,China(No.2019J0037)the Testing and Analyzing Funds of Kunming University of Science and Technology(No.2018T20150055).
文摘To evaluate the feasibility of recovering Pb and Zn sulfides and Ag-containing minerals from Zn leaching residue by the process of reduction roasting followed by flotation,the reaction behaviors of Pb and Zn sulfates during this process were investigated.Chemical analysis showed that the transformation ratios of PbSO4 and ZnSO4 could reach 65.51%and 52.12%,respectively,after reduction roasting,and the introduction of a sulfidation agent could improve the transformation ratios of these sulfates.scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)revealed that temperature obviously affects the particle size,crystal growth,and morphology of the artificial Pb and Zn sulfide minerals.Particle size analysis demonstrated that the particle size of the materials increases after roasting.Flotation tests revealed that a flotation concentrate composed of 12.01wt%Pb,27.78wt%Zn,and 6.975×10^(−2)wt%Ag with recoveries of 60.54%,29.24%,and 57.64%,respectively,could be obtained after roasting.