期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Dietary supplementation of zinc oxide modulates intestinal functionality during the post-weaning period in clinically healthy piglets
1
作者 Dirkjan Schokker Soumya K.Kar +3 位作者 Els Willems Alex Bossers Ruud A.Dekker Alfons J.M.Jansman 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期313-328,共16页
Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an... Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O. 展开更多
关键词 Immune system Intestinal functionality MICROBIOTA PIGLETS zinc oxide
下载PDF
Electronic and thermal properties of Ag-doped single crystal zinc oxide via laser-induced technique 被引量:1
2
作者 邢欢 王惠琼 +5 位作者 宋廷鲁 李纯莉 戴扬 傅耿明 康俊勇 郑金成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期44-51,共8页
The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfull... The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfully dope the single crystalline ZnO with Ag by the laser-induced method,which can effectively further post-treat grown samples.Magnetron sputtering was used to coat the Ag film with a thickness of about 50 nm on the single crystalline ZnO.Neodymium-doped yttrium aluminum garnet(Nd:YAG)laser was chosen to irradiate the Ag-capped ZnO samples,followed by annealing at700℃for two hours to form ZnO:Ag.The three-dimensional(3D)information of the elemental distribution of Ag in ZnO was obtained through time-of-flight secondary ion mass spectrometry(TOF-SIMS).TOF-SIMS and core-level x-ray photoelectron spectroscopy(XPS)demonstrated that the Ag impurities could be effectively doped into single crystalline ZnO samples as deep as several hundred nanometers.Obvious broadening of core level XPS profiles of Ag from the surface to depths of hundred nms was observed,indicating the variance of chemical state changes in laser-induced Ag-doped ZnO.Interesting features of electronic mixing states were detected in the valence band XPS of ZnO:Ag,suggesting the strong coupling or interaction of Ag and ZnO in the sample rather than their simple mixture.The Ag-doped ZnO also showed a narrower bandgap and a decrease in thermal diffusion coefficient compared to the pure ZnO,which would be beneficial to thermoelectric performance. 展开更多
关键词 zinc oxide Ag-doping laser-induced technique XPS SIMS thermal diffusivity
下载PDF
Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa
3
作者 Monica RUFFINI CASTIGLIONE Stefania BOTTEGA +1 位作者 Carlo SORCE Carmelina SPANÒ 《Rice science》 SCIE CSCD 2023年第5期449-458,I0021,共11页
Given the consistent release of zinc oxide(ZnO)nanoparticles into the environment,it is urgent to study their impact on plants in depth.In this study,grains of rice were treated with two different concentrations of Zn... Given the consistent release of zinc oxide(ZnO)nanoparticles into the environment,it is urgent to study their impact on plants in depth.In this study,grains of rice were treated with two different concentrations of ZnO nanoparticles(NP-ZnO,10 and 100 mg/L),and their bulk counterpart(B-ZnO)were used to evaluate whether ZnO action could depend on particle size.To test this hypothesis,root growth and development assessment,oxidative stress parameters,indole-3-acetic acid(IAA)content and molecules/enzymes involved in IAA metabolism were analyzed.In situ localization of Zn in control and treated roots was also performed.Though Zn was visible inside root cells only following nanoparticle treatment,both materials(NP-ZnO and B-ZnO)were able to affect seedling growth and root morphology,with alteration in the concentration/pattern of localization of oxidative stress markers and with a different action depending on particle size.In addition,only ZnO supplied as bulk material induced a significant increase in both IAA concentration and lateral root density,supporting our hypothesis that bulk particles might enhance lateral root development through the rise of IAA concentration.Apparently,IAA concentration was influenced more by the activity of the catabolic peroxidases than by the protective action of phenols. 展开更多
关键词 zinc oxide indole-3-acetic acid lateral root rice bulk particle NANOPARTICLE
下载PDF
Multi-Objective Adaptive Optimization Model Predictive Control:Decreasing Carbon Emissions from a Zinc Oxide Rotary Kiln
4
作者 Ke Wei Keke Huang +1 位作者 Chunhua Yang Weihua Gui 《Engineering》 SCIE EI CAS CSCD 2023年第8期96-105,共10页
The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality ... The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality is putting new demands on the industry,including green production and the use of fewer resources;thus,traditional stability control is no longer suitable for multi-objective control tasks.Although researchers have revealed the principle of the rotary kiln and set up computational fluid dynamics(CFD)simulation models to study its dynamics,these models cannot be directly applied to process control due to their high computational complexity.To address these issues,this paper proposes a multi-objective adaptive optimization model predictive control(MAO-MPC)method based on sparse identification.More specifically,with a large amount of data collected from a CFD model,a sparse regression problem is first formulated and solved to obtain a reduction model.Then,a two-layered control framework including real-time optimization(RTO)and model predictive control(MPC)is designed.In the RTO layer,an optimization problem with the goal of achieving optimal operation performance and the lowest possible resource consumption is set up.By solving the optimization problem in real time,a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions in an optimal state.Our experiments show the strength and reliability of the proposed method,which reduces the usage of coal while maintaining high profits. 展开更多
关键词 zinc oxide rotary kiln Model reduction Sparse identification Real-time optimization Model predictive control Process control
下载PDF
Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst
5
作者 Piyawan Nuengmatcha Arnannit Kuyyogsuy +3 位作者 Paweena Porrawatkul Rungnapa Pimsen Saksit Chanthai Prawit Nuengmatcha 《Water Science and Engineering》 EI CAS CSCD 2023年第3期243-251,共9页
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta... In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants. 展开更多
关键词 Magnetic zinc oxide/graphene/iron oxide PHOTOCATALYSIS Dye pollutants CATALYST Degradation
下载PDF
Synthesis and Characterization of Zinc Oxide and Zinc Oxide Doped with Chlorine Nanoparticles as Novel <i>α</i>-Amylase Inhibitors 被引量:1
6
作者 A. Al-Arfaj Ahlam N. Abd El-Rahman Soheir 《Food and Nutrition Sciences》 2021年第3期308-318,共11页
In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The chara... In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span> 展开更多
关键词 zinc oxide Nanoparticles zinc oxide Nanoparticles Doped with Chlorine Crystallinity Anti-Diabetic Activity α-Amylase Inhibitors
下载PDF
Three‑Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties 被引量:6
7
作者 Yan Song Fuxing Yin +3 位作者 Chengwei Zhang Weibing Guo Liying Han Ye Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期61-76,共16页
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ... Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials. 展开更多
关键词 Three-dimensional ordered structure Mesoporous carbon spheres zinc oxide nanoparticles Microwave absorption
下载PDF
Electrochemical Synthesis and Photocatalytic Property of Zinc Oxide Nanoparticles 被引量:4
8
作者 Kodihalli G.Chandrappa Thimmappa V.Venkatesha 《Nano-Micro Letters》 SCIE EI CAS 2012年第1期14-24,共11页
Zinc oxide(ZnO) nanoparticles of varying sizes(20, 44 and 73 nm) have been successfully synthesized by a hybrid electrochemical-thermal method using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and ... Zinc oxide(ZnO) nanoparticles of varying sizes(20, 44 and 73 nm) have been successfully synthesized by a hybrid electrochemical-thermal method using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The as-synthesized product was characterized by X-ray diffraction(XRD), X-ray photoelectron spectra(XPS), Scanning electron microscopy along with Energy dispersive analysis of X-ray(SEM/EDAX), Transmission electron microscopy(TEM), Ultra Violet- Diffuse reflectance spectroscopic methods(UV-DRS). and UV-DRS spectral methods.The as-synthesized compound were single-crystalline and Rietveld refinement of calcined samples exhibited hexagonal(Wurtzite) structure with space group of P63mc(No.186). The band gaps for synthesized ZnO nanoparticles were 3.07, 3.12 and 3.13 e V, respectively, based on the results of diffuse reflectance spectra(DRS). The electrochemically synthesized ZnO powder was used as photocatalysts for UV-induced degradation of Methylene blue(MB). Photodegradation was also found to be function of exposure time and dye solution p H. It has been found that as-synthesized powder has excellent photocatalytic activity with 92% degradation of MB, indicating ZnO nanoparticles can play an important role as a semiconductor photocatalyst. 展开更多
关键词 zinc oxide Methylene Blue Photocatalytic activity SEMICONDUCTOR
下载PDF
Indium recovery from zinc oxide flue dust by oxidative pressure leaching 被引量:3
9
作者 黎铉海 张燕娟 +2 位作者 覃全伦 阳健 韦岩松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期141-145,共5页
Indium was recovered from zinc oxide flue dust(ZOFD)with sulfuric acid by oxidative pressure leaching in an autoclave, and the effects of different technological conditions on indium leaching were studied.Potassium pe... Indium was recovered from zinc oxide flue dust(ZOFD)with sulfuric acid by oxidative pressure leaching in an autoclave, and the effects of different technological conditions on indium leaching were studied.Potassium permanganate and hydrogen peroxide were used as oxidants.The atmospheric pressure leaching experiments were also carried out.The experimental results show that the leaching rate of indium can be effectively improved by oxidative pressure leaching.The optimum conditions of pressure leaching are determined as sulfuric 5.10 mol/L acid,leaching time 150 min,temperature 90℃,and the H2O2 dosage of 0.5 mL/g or 2.5%KMnO4.The leaching rate of indium is more than 90%,which is increased by 13%compared with that of atmospheric pressure leaching process without oxidant under the optimum conditions. 展开更多
关键词 INDIUM zinc oxide flue dust oxidative pressure leaching potassium permanganate hydrogen peroxide
下载PDF
Synthesis, characterization and biocompatibility studies of zinc oxide(ZnO) nanorods for biomedical application 被引量:3
10
作者 R.Gopikrishnan K.Zhang +8 位作者 P.Ravichandran S.Baluchamy V.Ramesh S.Biradar P.Ramesh J.Pradhan J.C.Hall A.K.Pradhan G.T.Ramesh 《Nano-Micro Letters》 SCIE EI CAS 2010年第1期31-36,共6页
Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine.Here,we have synthesized zinc oxide(ZnO)nanorods using zinc acetate and hexamethylenetetram... Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine.Here,we have synthesized zinc oxide(ZnO)nanorods using zinc acetate and hexamethylenetetramine as precursors followed by characterizing using X-ray diffraction,fourier transform infrared spectroscopy,scanning electron microscopy and transmission electron microscopy.The growth of synthesized zinc oxide nanorods was found to be very close to its hexagonal nature,which is confirmed by X-ray diffraction.The nanorod was grown perpendicular to the long-axis and grew along the[001]direction,which is the nature of ZnO growth.The morphology of synthesized ZnO nanorods from the individual crystalline nucleus was confirmed by scanning and transmission electron microscopy.The length of the nanorod was estimated to be around 21 nm in diameter and 50 nm in length.Our toxicology studies showed that synthesized ZnO nanorods exposure on hela cells has no significant induction of oxidative stress or cell death even in higher concentration(10μg/ml).The results suggest that ZnO nanorods might be a safer nanomaterial for biological applications. 展开更多
关键词 zinc oxide [ZnO] NANORODS XRD SEM & TEM CYTOTOXICITY
下载PDF
Recent progress of the native defects and p-type doping of zinc oxide 被引量:2
11
作者 汤琨 顾书林 +3 位作者 叶建东 朱顺明 张荣 郑有炓 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期27-49,共23页
Zinc oxide(ZnO) is a compound semiconductor with a direct band gap and high exciton binding energy.The unique property,i.e.,high efficient light emission at ultraviolet band,makes ZnO potentially applied to the short-... Zinc oxide(ZnO) is a compound semiconductor with a direct band gap and high exciton binding energy.The unique property,i.e.,high efficient light emission at ultraviolet band,makes ZnO potentially applied to the short-wavelength light emitting devices.However,efficient p-type doping is extremely hard for ZnO.Due to the wide band gap and low valence band energy,the self-compensation from donors and high ionization energy of acceptors are the two main problems hindering the enhancement of free hole concentration.Native defects in ZnO can be divided into donor-like and acceptorlike ones.The self-compensation has been found mainly to originate from zinc interstitial and oxygen vacancy related donors.While the acceptor-like defect,zinc vacancy,is thought to be linked to complex shallow acceptors in group-VA doped ZnO.Therefore,the understanding of the behaviors of the native defects is critical to the realization of high-efficient p-type conduction.Meanwhile,some novel ideas have been extensively proposed,like double-acceptor co-doping,acceptor doping in iso-valent element alloyed ZnO,etc.,and have opened new directions for p-type doping.Some of the approaches have been positively judged.In this article,we thus review the recent(2011-now) research progress of the native defects and p-type doping approaches globally.We hope to provide a comprehensive overview and describe a complete picture of the research status of the p-type doping in ZnO for the reference of the researchers in a similar area. 展开更多
关键词 zinc oxide native defects p-type doping ACCEPTOR
下载PDF
Synthesis of Zinc Oxide Nanostructures on Graphene/Glass Substrate via Electrochemical Deposition: Effects of Potassium Chloride and Hexamethylenetetramine as Supporting Reagents 被引量:2
12
作者 Nur Ashikyn Hambali Abdul Manaf Hashim 《Nano-Micro Letters》 SCIE EI CAS 2015年第4期317-324,共8页
The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn ... The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn O nanostructures electrodeposited on graphene/glass substrates were investigated.The supporting reagent HMTA does not increase the density of nanorods,but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75°C.Hydroxyl(OH-)ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of Zn O on the polar plane to produce vertically aligned nanorods along the c axis.By contrast,the highly electronegative chlorine(Cl-)ions from the supporting reagent KCl suppress the growth of Zn O on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures.HMTA was found to be able to significantly improve the crystallinity of the grown Zn O structures,as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region.Equimolar mixtures of Zn(NO3)2 6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density,uniform Zn O nanostructures.The corresponding transmittances for such molar ranges are approximately 55–58%(HMTA)and 63–70%(KCl),which are acceptable for solar cell and optoelectronic devices. 展开更多
关键词 zinc oxide Electrochemical deposition GRAPHENE Nanorod Nanowall
下载PDF
Review of flexible and transparent thin-film transistors based on zinc oxide and related materials 被引量:1
13
作者 张永晖 梅增霞 +1 位作者 梁会力 杜小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期1-17,共17页
Flexible and transparent electronics enters into a new era of electronic technologies.Ubiquitous applications involve wearable electronics,biosensors,flexible transparent displays,radio-frequency identifications(RFIDs... Flexible and transparent electronics enters into a new era of electronic technologies.Ubiquitous applications involve wearable electronics,biosensors,flexible transparent displays,radio-frequency identifications(RFIDs),etc.Zinc oxide(ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices,owing to their high electrical performances,together with low processing temperatures and good optical transparencies.In this paper,we review recent advances in flexible and transparent thin-film transistors(TFTs) based on ZnO and relevant materials.After a brief introduction,the main progress of the preparation of each component(substrate,electrodes,channel and dielectrics) is summarized and discussed.Then,the effect of mechanical bending on electrical performance is highlighted.Finally,we suggest the challenges and opportunities in future investigations. 展开更多
关键词 zinc oxide flexible electronics transparent electronics thin-film transistors
下载PDF
Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach 被引量:1
14
作者 Snehal Yedurkar Chandra Maurya Prakash Mahanwar 《Open Journal of Synthesis Theory and Applications》 CAS 2016年第1期1-14,共14页
Green synthesis of metal oxide nanoparticles using plant extract is a promising alternative to traditional method of chemical synthesis. In this paper, we report the synthesis of nanostructured zinc oxide particles by... Green synthesis of metal oxide nanoparticles using plant extract is a promising alternative to traditional method of chemical synthesis. In this paper, we report the synthesis of nanostructured zinc oxide particles by biological method. Highly stable and spherical zinc oxide nanoparticles are produced by using zinc acetate and Ixora coccinea leaf extract. Formation of zinc oxide nanoparticles has been confirmed by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering analysis (DLS), zetapotential study and Scanning Electron Microscope with the Energy Dispersive X-ray studies (EDX). Dynamic light scattering analysis shows average particle size of 145.1 nm whereas high zeta potential value confirms the stability of formed zinc oxide nanoparticles. The Scanning Electron Microscope reveals spherical morphology of nanoparticles and Energy Dispersive X-ray analysis confirms the formation of highly pure zinc oxide nanoparticles. The zinc oxide nanoparticles from Ixora coccinea leaves are expected to have applications in biomedical, cosmetic industries, biotechnology, sensors, medical, catalysis, optical device, coatings, drug delivery and water remediation, and also may be applied for electronic and magneto-electric devices. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production. 展开更多
关键词 zinc oxide Nanoparticles Ixora coccinea Green Synthesis XRD DLS EDX
下载PDF
Effect of Zinc Oxide Nanoparticles on Denitrification and Denitrifying Bacteria Communities in Typical Estuarine Sediments
15
作者 CHEN Xi XIANG Zhuangzhuang +4 位作者 REN Zhaomeng HUANG Xiao LI Hui SUN Pengfei BAI Jie 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第3期599-607,共9页
For revealing the effects of increasing of zinc oxide nanoparticles(ZnO NPs)on denitrification and denitrifying bacteria communities in estuarine sediments,the surface sediments of two typical estuaries(the Yangtze Ri... For revealing the effects of increasing of zinc oxide nanoparticles(ZnO NPs)on denitrification and denitrifying bacteria communities in estuarine sediments,the surface sediments of two typical estuaries(the Yangtze River Estuary and the Yellow River Estuary)were added with medium concentration(170mgL−1)and high concentration(1700mgL−1)of ZnO NPs for anaerobic cul-ture in laboratory.The concentration of NO_(3)^(−)and NO_(2)^(−),the reductase activity and denitrification rate were measured by physico-chemical analysis,nirS gene abundance and denitrifying bacteria communities by molecular biological methods.The results showed that ZnO NPs inhibited NO_(3)^(−), NO_(2)^(−)reduction process and NO_(3)^(−), NO_(2)^(−)reductase activity,and a stronger inhibition effect resulting from the higher ZnO NPs concentration.ZnO NPs decreased nirS gene abundance and community diversity of denitrifying bacteria.In addition,the inhibition degree of ZnO NPs on the denitrification process of sediments in different estuaries was different.These results were of great significance for evaluating the potential ecological toxicity and risks of nanomaterials in estuaries. 展开更多
关键词 zinc oxide nanoparticles DENITRIFICATION denitrifying bacteria community ESTUARINE SEDIMENTS
下载PDF
Ultraviolet Spectrum of Nanometer Zinc Oxide Prepared by Sol-Gel Process
16
作者 Xiaoping Liang Xiaohui Wang Shaobo Xin Yajin Liu 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期567-569,共3页
Zinc oxide nanometer powders were prepared by the sol-gel process.The sol and the powders characteristic of absorbing ultraviolet light is detected by the ultraviolet spectrometer.The results indicate the concentratio... Zinc oxide nanometer powders were prepared by the sol-gel process.The sol and the powders characteristic of absorbing ultraviolet light is detected by the ultraviolet spectrometer.The results indicate the concentration of zinc acetate dihydrate in isopropyl alcohol solution and the final pH value of the aqueous sol have effect on the UV absorption of the sol. The nanometer zinc oxide has strong absorption at 200 nm~360 nm,and over 90% ultraviolet in the range of 200 nm~360 nm wavelength are absorbed.The characteristic of absorbing ultraviolet light of zinc oxide increases as the particle size of zinc oxide decreases. 展开更多
关键词 SOL-GEL zinc oxide NANOMETER UV absorption
下载PDF
Zinc oxide nanoparticles reduce the chemoresistance of gastric cancer by inhibiting autophagy
17
作者 You-Han Miao Li-Ping Mao +4 位作者 Xiao-Juan Cai Xiao-Ying Mo Qi-Qi Zhu Fei-Tong Yang Mei-Hua Wang 《World Journal of Gastroenterology》 SCIE CAS 2021年第25期3851-3862,共12页
BACKGROUND Gastric cancer(GC)is a common malignancy that results in a high rate of cancerrelated mortality.Cisplatin(DDP)-based chemotherapy is the first-line clinical treatment for GC therapy,but chemotherapy resista... BACKGROUND Gastric cancer(GC)is a common malignancy that results in a high rate of cancerrelated mortality.Cisplatin(DDP)-based chemotherapy is the first-line clinical treatment for GC therapy,but chemotherapy resistance remains a severe clinical challenge.Zinc oxide nanoparticle(ZnO-NP)has been identified as a promising anti-cancer agent,but the function of ZnO-NP in GC development is still unclear.AIM To explore the effect of ZnO-NP on chemotherapy resistance during GC progression.METHODS ZnO-NP was synthesized,and the effect and underlying mechanisms of ZnO-NP on the malignant progression and chemotherapy resistance of GC cells were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays,colony formation assays,transwell assays,wound healing assays,flow cytometry,and Western blot analysis in GC cells and DDP-resistant GC cells,and by tumorigenicity analyses in nude mice.RESULTS Our data revealed that ZnO-NP was able to inhibit proliferation,migration,and invasion and induce apoptosis of GC cells.Meanwhile,ZnO-NP significantly reduced the half maximal inhibitory concentration(IC50)of DDP for the inhibition of cell proliferation of DDP-resistant SGC7901/DDP cell lines.Autophagy was increased in DDP-resistant GC cells,as demonstrated by elevated light chain 3-like protein 2(LC3II)/LC3I and Beclin-1 expression and repressed p62 expression in SGC7901/DDP cells compared to SGC7901 cells.Mechanically,ZnO-NP inhibited autophagy in GC cells and treatment with DDP induced autophagy,which was reversed by ZnO-NP.Functionally,ZnO-NP attenuated the tumor growth of DDP-resistant GC cells in vivo.CONCLUSION We conclude that ZnO-NP alleviates the chemoresistance of GC cells by inhibiting autophagy.Our findings present novel insights into the mechanism by which ZnO-NP regulates the chemotherapy resistance of GC.ZnO-NP may serve as a potential therapeutic candidate for GC treatment.The potential role of ZnO-NP in the clinical treatment of GC needs clarification in future investigations. 展开更多
关键词 Gastric cancer PROGRESSION CHEMORESISTANCE zinc oxide nanoparticle AUTOPHAGY MTT assays
下载PDF
Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead(Ⅱ) ions from aqueous solution
18
作者 Racheal Aigbe Doga Kavaz 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期92-102,共11页
Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained... Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained from a local wood mill.The matrix of both provides a better material as an adsorbent.The present study applied the functionality of ZnOnp,CSD,and ZnOnp-CSD matrix as adsorbent materials for the removal of Pb(Ⅱ) ions from aqueous solution.The method of batch process was employed to investigate the potential of the adsorbents.The influence of pH,contact time,initial concentration of adsorbate,the dosage of adsorbents,and the temperature of adsorbate-adsorbent mixture on the adsorption capacity were revealed.The adsorption isotherm studies indicate that both Freundlich and Langmuir isotherms were suitable to express the experimental data obtained with theoretical maximum adsorption capacities(q_(m)) of 70.42,87.72,and 92.59 mg·g^(-1) for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix,respectively.The separation factors(R_(L)) calculated showed that the use of the adsorbents for the removal of Pb(Ⅱ) ions is a feasible process with R_(L) <1.The thermodynamic parameters obtained revealed that the processes are endothermic,feasible,and spontaneous in nature at 25-50℃.Evaluation of the kinetic model elected that the processes agreed better with pseudo-second order where the values of rate constant(k_2) obtained for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix are 0.00149,0.00188,and 0.00315 g·mg^(-1)·min^(-1),respectively.The reusability potential examined for four cycles indicated that the adsorbents have better potential and economic value of reuse and the ZnOnp-CSD matrix indicates improved adsorbent material to remove Pb(Ⅱ) ions from aqueous solution. 展开更多
关键词 zinc oxide nanoparticles Carbonized saw dust MATRIX Batch process Reusability potential
下载PDF
Ameliorative effects of melatonin and zinc oxide nanoparticles treatment against adverse effects of busulfan induced infertility in male albino mice
19
作者 AMOURA M.ABOU-EL-NAGA SHAKER A.MOUSA +2 位作者 FAYEZ ALTHOBAITI EMAN FAYAD ENGY S.FAHIM 《BIOCELL》 SCIE 2022年第2期535-545,共11页
Testicular damage is one of the most hazardous effects as it’s associated with azoospermia.Busulfan(Bu)is a highly toxic chemotherapeutic drug that affects testis.Thirty male Swiss albino mice divided into six groups... Testicular damage is one of the most hazardous effects as it’s associated with azoospermia.Busulfan(Bu)is a highly toxic chemotherapeutic drug that affects testis.Thirty male Swiss albino mice divided into six groups of 5 animals each.Control(oral 0.9%saline daily for 75 days);Mel(20 mg/kg/day orally for 30 days);ZnO NPs(5 mg/kg/day i.p.for 30 days);BU(single i.p.injection of 40 mg/kg and then left for 45 days);BU+Mel(single 40 mg/kg dose of BU and left for 45 days followed by 20 mg/kg/day Mel for 30 days);BU+ZnO NPs(single dose of 40 mg/kg of BU and left for 45 days,then 5 mg/kg/day ZnO NPs for 30 days).Preparation and Characterization of ZnO NPs.Specimens from testis prepared for ultrastructural investigations using TEM after Masson’s trichrome and toluidine blue staining.BU induced histological and ultrastructural damage of the testis.Moreover,the present results could be concluded that Mel or ZnO NPs can protect the testicular tissue against ultrastructural alterations induced by BU by its antioxidant and anti-apoptotic effects. 展开更多
关键词 BUSULFAN MELATONIN zinc oxide nanoparticles ULTRASTRUCTURE TESTIS Mice
下载PDF
Preparation and characterization of ultrafine zinc oxide powder by hydrothermal method
20
作者 申晓毅 翟玉春 张艳辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期236-239,共4页
With Zinc acetate and sodium hydroxide as raw materials,while polyethylene glycol employed as dispersant agent, ultrafine zinc oxide powder was synthesized by hydrothermal method.Influence of NaOH concentration on mor... With Zinc acetate and sodium hydroxide as raw materials,while polyethylene glycol employed as dispersant agent, ultrafine zinc oxide powder was synthesized by hydrothermal method.Influence of NaOH concentration on morphology of ZnO powder was studied.The as-synthesized ZnO powder looked like flower cluster and consisted of microrods with hexagonal morphologies.The crystal structure and optical property of the as-prepared powder were also characterized using XRD,UV-visible absorption spectrum and photoluminescence spectrum.The results indicate that ZnO powder is of hexagonal wurtzite structure and well crystallized with high purity.There is a strong excitation absorption peak at 300 nm in UV-visible absorption spectrum and blue shift exists obviously.The optical property of ZnO powder is excellent. 展开更多
关键词 zinc oxide hexagonal wurtzite structure photoluminescence spectrum optical property
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部