The effect of MnO4- and silver content on electrochemical behaviour of five commercial Pb-Ag alloy anodes was studied in acid zinc sulphate electrolyte with and without MnO4- ions at 38 °C during potential decay ...The effect of MnO4- and silver content on electrochemical behaviour of five commercial Pb-Ag alloy anodes was studied in acid zinc sulphate electrolyte with and without MnO4- ions at 38 °C during potential decay periods. When the anodes were immersed into acid zinc sulphate electrolyte without MnO4- ions, the Pb-0.72%Ag anode entered complete passivation state in the shortest time among the five anodes, followed by anodes Pb-0.67%Ag, Pb-0.60%Ag, Pb-0.58%Ag and Pb-0.29%Ag-0.1%Ca by measurement of open circuit potential. During immersion of the anodes, MnO4 ions accelerated the passivation and increased the corrosion current density of the anodes. After immersion in zinc electrolyte with MnO4-, the anode Pb-0.72%Ag had the best corrosion resistance, followed by anodes Pb-0.67%Ag, Pb-0.60%Ag, then the close anodes Pb-0.58%Ag and Pb-0.29%Ag-0.1%Ca by the electrochemical impedance spectroscopy (EIS) analysis.展开更多
基金Project(RDCPJ346365-06)supported by the Natural Sciences and Engineering Research Council of CanadaProject(51208193)supported by the National Natural Science Foundation of ChinaProject(11jj6034)supported by the Hunan Provincial Natural Science Foundation
文摘The effect of MnO4- and silver content on electrochemical behaviour of five commercial Pb-Ag alloy anodes was studied in acid zinc sulphate electrolyte with and without MnO4- ions at 38 °C during potential decay periods. When the anodes were immersed into acid zinc sulphate electrolyte without MnO4- ions, the Pb-0.72%Ag anode entered complete passivation state in the shortest time among the five anodes, followed by anodes Pb-0.67%Ag, Pb-0.60%Ag, Pb-0.58%Ag and Pb-0.29%Ag-0.1%Ca by measurement of open circuit potential. During immersion of the anodes, MnO4 ions accelerated the passivation and increased the corrosion current density of the anodes. After immersion in zinc electrolyte with MnO4-, the anode Pb-0.72%Ag had the best corrosion resistance, followed by anodes Pb-0.67%Ag, Pb-0.60%Ag, then the close anodes Pb-0.58%Ag and Pb-0.29%Ag-0.1%Ca by the electrochemical impedance spectroscopy (EIS) analysis.