Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well...Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs.展开更多
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate...Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re...Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.展开更多
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi...Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.展开更多
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor...With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin...Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.展开更多
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de...Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode.展开更多
A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to ...A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2) composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2) as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B) cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+) coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B) pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources.展开更多
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ...Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.展开更多
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ...Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs.展开更多
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely...Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.展开更多
Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for...Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.展开更多
Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.I...Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.In our investigation,we sought to mitigate these issues through the utilization of in situ zinc complex formation reactions to engineer hydrophobic protective layers on the zinc anode surface.These robust interfacial layers serve as effective barriers,isolating the zinc anode from the electrolyte and active water molecules and thereby preventing hydrogen evolution and the generation of undesirable byproducts.Additionally,the presence of numerous zincophilic sites within these protective layers facilitates uniform zinc deposition while concurrently inhibiting dendrite growth.Through comprehensive evaluation of functional anodes featuring diverse functional groups and alkyl chain lengths,we meticulously scrutinized the underlying mechanisms influencing performance variations.This analysis involved precise modulation of interfacial hydrophobicity,rapid Zn^(2+)ion transport,and ordered deposition of Zn^(2+)ions.Notably,the optimized anode,fabricated with octadecylphosphate(OPA),demonstrated exceptional performance characteristics.The Zn//Zn symmetric cell exhibited remarkable longevity,exceeding 4000 h under a current density of 2 mA cm^(-2)and a capacity density of 2 mA h cm^(-2),Furthermore,when integrated with a VOH cathode,the complete cell exhibited superior capacity retention compared to anodes modified with alternative organic molecules.展开更多
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit...Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.展开更多
Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have em...Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have emerged as cost-eff ective and high-energy-density solutions,replacing expensive all-vanadium fl ow batteries.However,uneven Zn deposition during charging results in the formation of problematic Zn dendrites,leading to mass transport polarization and self-discharge.Stable Zn plating and stripping are essential for the successful operation of high-areal-capacity ZBFBs.In this study,we successfully synthesized nitrogen and oxygen co-doped functional carbon felt(NOCF4)electrode through the oxidative polymerization of dopamine,followed by calcination under ambient conditions.The NOCF4 electrode eff ectively facilitates effi cient“shuttle deposition”of Zn during charging,signifi cantly enhancing the areal capacity of the electrode.Remarkably,ZBFBs utilizing NOCF4 as the anode material exhibited stable cycling performance for 40 cycles(approximately 240 h)at an areal capacity of 60 mA h/cm^(2).Even at a high areal capacity of 130 mA h/cm^(2),an impressive energy effi ciency of 76.98%was achieved.These fi ndings provide a promising pathway for the development of high-areal-capacity ZBFBs for advanced energy storage systems.展开更多
V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)i...V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.展开更多
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future...The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.展开更多
Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition ...Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries.展开更多
基金the support from the Zhejiang Provincial Natural Science Foundation (No.LR22E070001),the National Natural Science Foundation of China (Nos.12275239 and 11975205)the Guangdong Basic and Applied Basic Research Foundation (No.2020B1515120048).
文摘Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs.
基金financially supported by the National Natural Science Foundation of China(22168019 and 52074141)the Major Science and Technology Projects in Yunnan Province(202202AB080014)+1 种基金The authors are grateful to the National Natural Science Foundation of Chinathe Major Science and Technology Projects in Yunnan Province for their support.
文摘Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 52201201, 52372171)the State Key Lab of Advanced Metals and Materials (Grant No. 2022Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 00007747, 06500205)the Initiative Postdocs Supporting Program (Grant No. BX20190002)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
基金the financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technologythe Supported by the Fundamental Research Funds for the Central Universities。
文摘Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,22304055)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+4 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151,E2022209158,B2022209026,D2023209012)the Central Guiding Local Science and Technology Development Fund Project(236Z4409G)the Science and Technology Project of Hebei Education Department(SLRC2019028)the Science and Technology Planning Project of Tangshan City(22130227H)。
文摘With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金financially supported by the National Natural Science Foundation of China (Nos.51872090 and51772097)the Hebei Natural Science Fund for Distinguished Young Scholar,China (No.E2019209433)+2 种基金the Youth Talent Program of Hebei Provincial Education Department,China (No.BJ2018020)the Natural Science Foundation of Hebei Province,China (No.E2020209151)the Science and Technology Project of Hebei Education Department,China (No.SLRC2019028)。
文摘Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.
基金supported by National Natural Science Foundation of China(52371095)Innovation Research Group of Universities in Chongqing(CXQT21030)+2 种基金Chongqing Talents:Exceptional Young Talents Project(CQYC201905100)Chongqing Youth Expert Studio,Chongqing Overseas Chinese Entrepreneurship and Innovation Support Program(cx2023117)Chongqing Natural Science Foundation Innovation and Development Joint Fund(CSTB 2022NS CQLZX0054)。
文摘Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode.
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-001)supported by National Research Foundation (NRF)funded by the Ministry of Science and Technology (NRF-2021R1F1A1064111)Ministry of Education (NRF-2017R1A6A1A06015181)of the Republic of Korea.
文摘A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2) composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2) as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B) cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+) coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B) pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources.
基金supported by the Key Program of Natural Science Foundation of Gansu Province (23JRRA789)the Major Science and Technology Project of Gansu Province (22ZD6GA008)。
文摘Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.
基金supported financially by the Natural Science Foundation of Shandong Province,China(grant numbers ZR2020QE067,ZR2020QB117,and ZR2022MB143)the New Colleges and Universities Twenty Foundational Projects of Jinan City,China(grant number 2021GXRC068)+2 种基金the National Natural Science Foundation of China,China(grant number 22208174)The Scientific Research Foundation in Qilu University of Technology(Shandong Academy of Sciences),China(grant numbers 2023PY002)The Talent research project of Qilu University of Technology(Shandong Academy of Sciences),China(grant numbers 2023RCKY013)。
文摘Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs.
基金the financial support from the National Key Research and Development Program of China(2022YFA1207503)the Giga Force Electronics Interdisciplinary Funding(JJHXM002208-2023)。
文摘Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.
基金financially supported by National Natural Science Foundation of China(No.52102270)the Natural Science Foundation of Shandong Province of China(ZR2021QE002)+1 种基金the support from the Institute startup grant from Qingdao Universitythe Shandong Center for Engineered Nonwovens(SCEN)。
文摘Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.
基金financially supported by the Jiangsu Distinguished Professors Project (No.1711510024)the Funding for Scientific Research Startup of Jiangsu University (No.4111510015,19JDG044)+5 种基金the Jiangsu Provincial Program for High-Level Innovative and Entrepreneurial Talents Introductionthe National Natural Science Foundation of China (No.22008091)the Jiangsu Agriculture Science and Technology Innovation Fund (No.CX (21)1007)the Natural Science Foundation of Guangdong Province (2023A1515010894)the Open Project of Luzhou Key Laboratory of Fine Chemical Application Technology (HYJH-2302-A)the National Institute of Education,Singapore,under its Academic Research Fund (RI 1/21 EAH)。
文摘Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.In our investigation,we sought to mitigate these issues through the utilization of in situ zinc complex formation reactions to engineer hydrophobic protective layers on the zinc anode surface.These robust interfacial layers serve as effective barriers,isolating the zinc anode from the electrolyte and active water molecules and thereby preventing hydrogen evolution and the generation of undesirable byproducts.Additionally,the presence of numerous zincophilic sites within these protective layers facilitates uniform zinc deposition while concurrently inhibiting dendrite growth.Through comprehensive evaluation of functional anodes featuring diverse functional groups and alkyl chain lengths,we meticulously scrutinized the underlying mechanisms influencing performance variations.This analysis involved precise modulation of interfacial hydrophobicity,rapid Zn^(2+)ion transport,and ordered deposition of Zn^(2+)ions.Notably,the optimized anode,fabricated with octadecylphosphate(OPA),demonstrated exceptional performance characteristics.The Zn//Zn symmetric cell exhibited remarkable longevity,exceeding 4000 h under a current density of 2 mA cm^(-2)and a capacity density of 2 mA h cm^(-2),Furthermore,when integrated with a VOH cathode,the complete cell exhibited superior capacity retention compared to anodes modified with alternative organic molecules.
基金financially supported by the National Natural Science Foundation of China (No. 52377222)the Natural Science Foundation of Hunan Province, China (Nos. 2023JJ20064, 2023JJ40759)。
文摘Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.
基金supported by Natural Science Foundation of Anhui Higher Education Institution of China(2023AH051318).
文摘Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have emerged as cost-eff ective and high-energy-density solutions,replacing expensive all-vanadium fl ow batteries.However,uneven Zn deposition during charging results in the formation of problematic Zn dendrites,leading to mass transport polarization and self-discharge.Stable Zn plating and stripping are essential for the successful operation of high-areal-capacity ZBFBs.In this study,we successfully synthesized nitrogen and oxygen co-doped functional carbon felt(NOCF4)electrode through the oxidative polymerization of dopamine,followed by calcination under ambient conditions.The NOCF4 electrode eff ectively facilitates effi cient“shuttle deposition”of Zn during charging,signifi cantly enhancing the areal capacity of the electrode.Remarkably,ZBFBs utilizing NOCF4 as the anode material exhibited stable cycling performance for 40 cycles(approximately 240 h)at an areal capacity of 60 mA h/cm^(2).Even at a high areal capacity of 130 mA h/cm^(2),an impressive energy effi ciency of 76.98%was achieved.These fi ndings provide a promising pathway for the development of high-areal-capacity ZBFBs for advanced energy storage systems.
基金supported by the National Natural Science Foundation of China (21676036)the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing (CYB22043 and CYS22073)。
文摘V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.
基金financially supported by the National Natural Science Foundation of China(No.22179014,21603019)program for the Hundred Talents Program of Chongqing University。
文摘The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.
基金supported by the National Natural Science Foundation of China (21905157,22279077,21905056)the Hainan Provincial Natural Science Foundation of China (221RC452)+1 种基金the Start-up Research Foundation of Hainan University (KYQD (ZR)21059,KYQD (ZR)-21063)the Natural Science Foundation of Shanghai (22ZR1424500)。
文摘Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries.