期刊文献+
共找到49,069篇文章
< 1 2 250 >
每页显示 20 50 100
Light-assisted rechargeable zinc-air battery:Mechanism,progress,and prospects
1
作者 Jiangchang Chen Jinlong Luo +1 位作者 Youlin Xiang Yingjian Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期178-193,共16页
Exploring effective energy storage systems is critical to alleviate energy scarcity.Rechargeable zinc-air batteries are promising energy storage devices.However,conventional rechargeable zinc-air battery systems face ... Exploring effective energy storage systems is critical to alleviate energy scarcity.Rechargeable zinc-air batteries are promising energy storage devices.However,conventional rechargeable zinc-air battery systems face many challenges associated with electrolytes and electrodes,causing inferior electrochemistry performance.The light-assisted strategy represents a novel and innovative approach to conventional zinc-air battery technology that uses only electrical energy.This strategy effectively combines both light and electrical energy conversion/storage mechanisms.In addition,light-assisted rechargeable zinc-air batteries can achieve photocharging with or without applied electrical bias by partially using solar energy and the acceleration of oxygen reduction/evolution reaction kinetics.In this paper,the working mechanism and structural design of the light-assisted rechargeable zinc-air batteries are introduced based on the theory of photoelectrochemistry and its characteristics.Then,the latest advances in electrolyte and photocathode design strategies are discussed in detail.The performance enhancement of aqueous light-assisted rechargeable zinc-air batteries using photoelectric materials is explained.Finally,a summary and outlook on the further modification of properties of light-assisted rechargeable zinc-air batteries,especially the photovoltaic electrode catalyst design strategies,are illustrated.This review provides insights and guidance for the design of high-performance light-assisted rechargeable Zn-air batteries for next-generation energy storage devices. 展开更多
关键词 Zn-air battery Light-assisted ELECTROLYTE Catalyst SEMICONDUCTOR
下载PDF
Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery 被引量:2
2
作者 Yanan Ma Shaoru Tang +5 位作者 Haimeng Wang Yuxuan Liang Dingyu Zhang Xiaoyang Xu Qian Wang Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期138-149,I0006,共13页
The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient s... The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles. 展开更多
关键词 Electrospun nanofibers membranes Zeolite imidazole framework zinc-air battery ORR/OER bifunction Dual single-atomic sites catalysts
下载PDF
3D hollow sphere Co_3O_4/MnO_2-CNTs:Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery 被引量:2
3
作者 Xuemei Li Nengneng Xu +3 位作者 Haoran Li Min Wang Lei Zhang Jinli Qiao 《Green Energy & Environment》 SCIE 2017年第3期316-328,共13页
There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNT... There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process. 展开更多
关键词 Bi-functional catalyst Oxygen reduction reaction Oxygen evolution reaction Activity and stability Rechargeable zinc-air battery
下载PDF
One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery 被引量:1
4
作者 Yang Li Kuanda Xu +8 位作者 Qi Zhang Zhi Zheng Shunning Li Qinghe Zhao Can Li Cheng Dong Zongwei Mei Feng Pan Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期100-106,I0004,共8页
Rechargeable zinc-air batteries(ZAB)with a high theoretical energy density of 1086 Wh kg^(-1),have received tremendous research attention.However,the practical application of ZABs is still limited by high polarization... Rechargeable zinc-air batteries(ZAB)with a high theoretical energy density of 1086 Wh kg^(-1),have received tremendous research attention.However,the practical application of ZABs is still limited by high polarization and poor energy efficiency(low power density)due to the sluggish 4 electrons(e^(-))/oxygen(O_(2))kinetics over the air electrode.Here,a noble-metal-free Fe Nx C electrocatalyst is developed via a onepot approach,which provides a high density of the oxygen reduction reaction(ORR)active site and facilitates the ORR kinetics.Accordingly,the as-assembled Zn-air battery displayed a low charge–discharge voltage gap of 0.71 V at 10 m A cm^(-2),a remarkable peak power density as high as 181.2 m W cm^(-2),as well as the long-term durability for hundreds of hours,among the top level of those reported previously.Our work provides a major boost for the practical application of Zn-air battery in the future. 展开更多
关键词 FeNxC Oxygen reduction reaction zinc-air battery
下载PDF
FeCo alloy/N,S dual-doped carbon composite as a high-performance bifunctional catalyst in an advanced rechargeable zinc-air battery 被引量:3
5
作者 Shengming Chang Hui Zhang Zhongyi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期64-71,共8页
The rational design and development of cost-effective,high-performance,and stable bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts are essential for rechargeable zinc-air b... The rational design and development of cost-effective,high-performance,and stable bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts are essential for rechargeable zinc-air batteries.Herein,a novel FeCo composite composed of alloy nanoparticles embedded in an N,S dual-doped carbon matrix(FeCo/NSC)was prepared via one-step carbonization of amphiphilic dodecanethiol-metal salts wrapped in carbon nitride(C_(3)N_(4)).The compact combination of dual metalalloys and dual-doped carbon endowed the composite with the active sites for the ORR and OER,achieving efficient electrical transmission and highly efficient bifunctional catalytic performance.The obtained FeCo-1/NSC catalyst exhibited excellent electrocatalytic activity with a half-wave potential of 0.82 V(vs.RHE)for the ORR and a low overpotential of 0.325 V at 10 mA cm^(-2) for the OER.The liquid Zn-air battery with FeCo-1/NSC as an air electrode displayed excellent charge-discharge performance,high power density,and robust charge-discharge stability for 150 h compared to the 20%Pt/C+RuO_(2) counterpart.Furthermore,the FeCo-1/NSC-based flexible solid-state Zn-air battery exhibited a higher power density and good charge-discharge stability over 10 h of operation.Thus,a promising strategy for bifunctional electrocatalyst development as part of rechargeable and wearable Zn-air batteries was provided. 展开更多
关键词 Bifunctional catalyst Zinc air battery Solid-state battery Oxygen reduction Oxygen evolution
下载PDF
Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery 被引量:6
6
作者 Xue Zhao Xue Li +7 位作者 Zenghui Bi Yuwen Wang Haibo Zhang Xiaohai Zhou Quan Wang Yingtang Zhou Huaisheng Wang Guangzhi Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期514-524,I0014,共12页
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−... The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity. 展开更多
关键词 Single-atom Fe B-doped CN Oxygen reduction reaction Zn-air battery Electronic modulation
下载PDF
Application of Fe-Ni-W Plated Film Electrode to Zinc-Air Battery
7
作者 Sachio Yoshihara Hikari Ohtake Jiu Sasaki 《Journal of Materials Science and Chemical Engineering》 2019年第12期57-64,共8页
This study was aimed at the preparation of an electrode for Zinc–air battery, which had excellent catalytic activity by use of electroplating of alloys made of abundant metal, such as Fe and Ni. The oxygen overvoltag... This study was aimed at the preparation of an electrode for Zinc–air battery, which had excellent catalytic activity by use of electroplating of alloys made of abundant metal, such as Fe and Ni. The oxygen overvoltage of the Fe-Ni-W alloy plated electrode was the smallest through the measurement. The elemental composition and the enlargement of the surface area were confirmed by SEM and EDX analysis. Involvement of Fe and W of Fe-Ni-W alloy plated electrode will be one factor for its high catalytic activity. Thus plated Fe-Ni-W alloy electrodes were compared with other Fe alloy plated elec-trodes considering to their cathode performance as Zinc-air battery. The catalytic activity of Fe-Ni-W plated electrode showed the best performance comparing to Fe-Ni alloy plated electrodes as cathode for Zinc-air battery. Also comparing to the platinum electrode which had been widely used as cathode in the field of Zinc-air battery, the Fe-based alloy plated electrode showed better performance as the electrodes considering to its oxygen evolution reaction. 展开更多
关键词 Fe-Ni-W Alloy ELECTROPLATING zinc-air battery OXYGEN Evolution Reaction (OER)
下载PDF
MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nanoalloy as bifunctional oxygen electrocatalysts for zinc-air battery
8
作者 Mingkuan Xie Xin Xiao +7 位作者 Duojie Wu Cheng Zhen Chunsheng Wu Wenjuan Wang Hao Nian Fayan Li Meng Danny Gu Qiang Xu 《Nano Research》 SCIE EI CSCD 2024年第6期5288-5297,共10页
High-entropy alloy(HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties.The electronic structure regulation of HEAs plays a pivotal role in enhancing their elct... High-entropy alloy(HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties.The electronic structure regulation of HEAs plays a pivotal role in enhancing their elctrocatalytic ability.Herein,PtFeCoNiMn nanoparticles(NPs)with subtle lattice distortions are constructed on metal-organic framework-derived nitrogen-doped carbon by an ultra-rapid Joule heating process.Thanks to the modulated electronic structure and the inherent cocktail effect of HEAs,the as-synthesized PtFeCoNiMn/NC exhibits superior bifunctional electrocatalytic performance with a positive half-wave potential of 0.863 V vs.reversible hydrogen electrode(RHE)for oxygen reduction reaction and a low overpotential of 357 mV at 10 mA·cm^(-2)for oxygen evolution reaction.The assembled quasi-solid-state zinc-air battery using PtFeCoNiMn/NC as air electrode shows a high peak power density of 192.16 mW·cm^(-2),low charge−discharge voltage gap,and excellent durability over 500 cycles at 5 mA·cm^(-2).This work demonstrates an effective route for rational design of bifunctional nanostructured HEA electrocatalysts with favorable electronic structures,and opens up a fascinating directions for energy storage and conversion,and beyond. 展开更多
关键词 oxygen reduction reaction oxygen evolution reaction high-entropy nano-alloy zinc-air battery
原文传递
Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries
9
作者 Daijie Deng Honghui Zhang +6 位作者 Jianchun Wu Xing Tang Min Ling Sihua Dong Li Xu Henan Li Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期239-249,I0007,共12页
Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity... Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs. 展开更多
关键词 S-doped VN Electronic structures Spin state regulation Oxygen reduction reaction zinc-air batteries
下载PDF
A Review of Rechargeable Zinc-Air Batteries:Recent Progress and Future Perspectives
10
作者 Ghazanfar Nazir Adeela Rehman +8 位作者 Jong-Hoon Lee Choong-Hee Kim Jagadis Gautam Kwang Heo Sajjad Hussain Muhammad Ikram Abeer AAlObaid Seul-Yi Lee Soo-Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期358-401,共44页
Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advant... Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advantages such as low environmental impact,enhanced safety compared to Li-ion batteries,and cost-effectiveness due to the abundance of zinc.However,early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics.Recent advancements in restructuring the anode,utilizing alternative electrolytes,and developing bifunctional oxygen catalysts have significantly improved ZABs.Scientists have achieved battery reversibility over thousands of cycles,introduced new electrolytes,and achieved energy efficiency records surpassing 70%.Despite these achievements,there are challenges related to lower power density,shorter lifespan,and air electrode corrosion leading to performance degradation.This review paper discusses different battery configurations,and reaction mechanisms for electrically and mechanically rechargeable ZABs,and proposes remedies to enhance overall battery performance.The paper also explores recent advancements,applications,and the future prospects of electrically/mechanically rechargeable ZABs. 展开更多
关键词 zinc-air batteries Energy storage AFFORDABILITY REVERSIBILITY
下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries
11
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
Enhancing zinc-air battery performance by constructing threedimensional N-doped carbon coating multiple valence Co and MnO heterostructures
12
作者 Qi Liu Panzhe Qiao +6 位作者 Miaomiao Tong Ying Xie Xinxin Zhang Kuo Lin Zhijian Liang Lei Wang Honggang Fu 《Nano Research》 SCIE EI CSCD 2024年第6期5104-5113,共10页
Developing highly-efficient bifunctional oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)electrocatalysts is crucial for the widespread application of rechargeable Zn-air batteries(ZABs).Herein,an effi... Developing highly-efficient bifunctional oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)electrocatalysts is crucial for the widespread application of rechargeable Zn-air batteries(ZABs).Herein,an efficiency electrodeposition and pyrolytic strategy to synthesize the three-dimensional(3D)N-doped carbon coating multiple valence Co and MnO heterostructures supported on carbon cloth substrate(Co-MnO@NC/CC).It contains Co-Co,Co-N,and Co-O bonds,which synergistically enhance the oxygen reaction activity with MnO.It exhibits a working potential of 1.473 V at 10 mA·cm^(−2)for OER and onset potential of 0.97 V for ORR.Theory calculations demonstrate that the synergy between cobalt and manganese species could optimize the d-band center and reduce the energy barrier of Co-MnO@NC/CC for both OER and ORR processes.Besides,the MnO acts as the main OER active site could significantly optimize the energy barrier of O*→OOH*,thus further promoting the OER activity.It can be directly used as the air-cathode for both liquid-state and solid-state ZABs,which could afford a small voltage gap of 0.75 V at 10 mA·cm^(−2),a high power density of 172.5 mW·cm^(−2)and a long-term durability for 400 h,surpassing those of the Pt/C+RuO_(2)-based ZAB.Importantly,the assembled batteries show potential applications in portable devices. 展开更多
关键词 HETEROSTRUCTURE SYNERGY valence cobalt manganese oxide Zn-air battery
原文传递
d-Orbital steered FeN_(4)moiety through N,S dual-site adjustation for zinc-air flow battery
13
作者 Chunzhu Bao Mingwei Tong +1 位作者 Xueli Li Zhonghua Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期8-15,共8页
The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in s... The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in synergistically regulating their electronic states and structural porosity for the great device performance.Here,we conquer these issues by exploiting N and S co-doped graphene with COP rich in metal-ligand nitrogen to synergistically construct an effective catalyst for oxygen reduction reaction(ORR).Among them,the N and S co-doped sites with high electronegativity properties alter the number of electron occupations in the d orbital of the iron centre and form electron-transfer bridges,thereby boosting the selectivity of the ORR-catalysed four-electron pathway.Meanwhile,the introduction of COP materials aids the formation of pore interstices in the graphene lamellae,which both adequately expose the active sites and facilitate the transport of reactive substances.Benefiting from the synergistic effect,as-prepared catalyst exhibits excellent half-wave potentials(E_(1/2)=912 mV)and stability(merely 8.8%drop after a long-term durability test of 50000 s).Further,ZAFBs assembled with the N/SG@CO_(2)P catalyst demonstrate exceptional power density(163.8 mW cm^(-2))and continuous charge and discharge for approximately 140 h at 10 mA cm^(-2),outperforming the noble-metal benchmarks. 展开更多
关键词 Nitrogen/sulfurdual sites Metal-coordinated nitrogen sites Covalent organic polymer Oxygen reduction reaction Zn-airflow battery
下载PDF
Bifunctional oxygen electrocatalysts for rechargeable zinc-air battery based on MXene and beyond 被引量:1
14
作者 Jing Zhang Zixiang Cui +4 位作者 Jie Liu Chunjie Li Haoyi Tan Guangcun Shan Ruguang Ma 《Frontiers of physics》 SCIE CSCD 2023年第1期7-27,共21页
Oxygen electrocatalysts are of great importance for the air electrode in zinc–air batteries(ZABs).Owing to large surface area,high electrical conductivity and ease of modification,two-dimensional(2D)materials have be... Oxygen electrocatalysts are of great importance for the air electrode in zinc–air batteries(ZABs).Owing to large surface area,high electrical conductivity and ease of modification,two-dimensional(2D)materials have been widely studied as oxygen electrocatalysts for the rechargable ZABs.The elaborately modified 2D materials-based electrocatalysts,usually exhibit excellent performance toward the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),which have attracted extensive interests of worldwide researchers.Given the rapid development of bifunctional electrocatalysts toward ORR and OER,the latest progress of non-noble electrocatalysts based on layered double hydroxides(LDHs),graphene,and MXenes are intensively reviewed.The discussion ranges from fundamental structure,synthesis,electrocatalytic performance of these catalysts,as well as their applications in the rechargeable ZABs.Finally,the challenges and outlook are provided for further advancing the commercialization of rechargeable ZABs. 展开更多
关键词 MXenes oxygen reduction reaction oxygen evolution reaction ELECTROCATALYSTS zinc-air battery
原文传递
Electronically modulated d-band centers of MOF-derived carbon-supported Ru/HfO_(2) for oxygen reduction and aqueous/flexible zinc-air batteries
15
作者 Chuan Hu Fengli Wei +4 位作者 Qinrui Liang Qiming Peng Yuting Yang Tayirjan Taylor Isimjan Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期247-255,I0007,共10页
The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous comp... The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous composite(Ru/HfO_(2)-NC)with Ru/HfO2nanoparticles nested in nitrogen-doped porous carbon via a zeolitic imidazole frameworks-assisted(ZIF)co-precipitation and calcination approach.In particular,ZIF guides an in-situ construction of nested configuration and confines the scattered nanoparticles.Strikingly,Ru/HfO_(2)-NC exhibits unusual ORR activity,superb durability,and methanol tolerance in0.1 M KOH solution with high half-wave potential(E1/2)of 0.83 V and follows a near-4e-reaction pathway.Additionally,the ZAB assembled with cathodic Ru/HfO_(2)-NC outputs a power density of 157.3 m W cm^(-2),a specific capacity of 775 mA h g-1Zn,and a prolonged lifespan of 258 h at 5 mA cm^(-2).Meanwhile,the catalyst has demonstrated potential applicability in flexible ZAB.As suggested by experimental results and density functional theory(DFT)analysis,the remarkable property possibly originated from the optimization of the adsorption and desorption of reactive intermediates caused by the reconfiguration of the electronic structure between Ru and HfO_(2). 展开更多
关键词 Ru/HfO_(2) Charge interaction Oxygen vacancy Oxygen reduction zinc-air battery
下载PDF
Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries
16
作者 Miao He Chaozhu Shu +8 位作者 Ruixing Zheng Wei Xiang Anjun Hu Yu Yan Zhiqun Ran Minglu Li Xiaojuan Wen Ting Zeng Jianping Long 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期318-330,共13页
Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes h... Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB.Herein,the N-doped carbon cloth(NC)prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth.Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn^(2+)by boosting the desolvation process of Zn^(2+),eventually reducing the nucleation overpotential.Besides,theoretical calculation results confirm the zincophilicity of N-containing functional group(such as pyridine N and pyrrole N),which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn^(2+) in the vicinity of the surface and enhancing its interaction with zinc atoms.As a result,the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8%and long-term stability of over 500 cycles at 0.2 mA cm^(-2).And the Coulombic efficiency reached about 99.5%at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm^(-2).The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV.In addition,the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh g_(Zn)^(-1) and a long life of over 430 cycles.The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn^(2+) presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes. 展开更多
关键词 Zinc metal anodes Dendrite-free Surface chemical regulation Ion-transference kinetics Aqueous zinc-air battery
下载PDF
Individually-atomic governing d-π*orbital interactions via Cupromoted optimization of Fe-d band centers for high-efficiency zinc-air battery
17
作者 Xinyan Zhou Kexin Song +7 位作者 Yu Feng Chao Jiang Zhongjun Chen Zizhun Wang Nailin Yue Xin Ge Wei Zhang Weitao Zheng 《Nano Research》 SCIE EI CSCD 2023年第4期4634-4642,共9页
It is challenging for precise governing of electronic configuration of the individually-atomic catalysts toward optimal electrocatalysis,as d-band configuration of a metal center determines the adsorption behavior of ... It is challenging for precise governing of electronic configuration of the individually-atomic catalysts toward optimal electrocatalysis,as d-band configuration of a metal center determines the adsorption behavior of reactive species to the center in oxygen reduction reaction(ORR).The addition of Cu atom modifies the d-band center position of Fe central atom,thus strengthening the d-π*orbital interactions.Herein,FeCu-NC catalyst in the nitrogen-doped carbon(NC)support containing individual dual-metal CuN4/FeN4 sites was prepared by the surface confinement strategy of zeolitic imidazolate framework(ZIF),treated as a model catalyst.Experimentally and theoretically co-verified dual-metal CuN4/FeN4 sites highly dispersed in the NC support,enable transferring more electrons from FeN4 sites to*OH intermediates,thereby accelerating the desorption process of*OH species.Superior to those commercial Pt/C,Our FeCu-NC catalyst exhibited extraordinary ORR activity(with a E1/2 as high as 0.87 V)and cycling stability in 0.1 M KOH electrolyte,and thereof demonstrated excellent discharge performance in zinc-air batteries.Our construction of dual-atom catalysts(DACs)provides a strategy for atom-by-atom designing high-efficiency catalysts via orbital regulation. 展开更多
关键词 dual-atom catalysts(DACs) electronic configuration oxygen reduction reaction(ORR) zinc-air battery
原文传递
Bulk preparation of free-standing single-iron-atom catalysts directly as the air electrodes for high-performance zinc-air batteries
18
作者 Hong-Bo Zhang Yu Meng +11 位作者 Hong Zhong Lili Zhang Shichao Ding Lingzhe Fang Tao Li Yi Mei Peng-Xiang Hou Chang Liu Scott P.Beckman Yuehe Lin Hui-Ming Cheng Jin-Cheng Li 《Carbon Energy》 SCIE CSCD 2023年第5期57-66,共10页
The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggis... The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices. 展开更多
关键词 atomic Fe-N_(5)species free-standing electrode large-scale preparation oxygen reduction reaction zinc-air battery
下载PDF
Edge atomic Fe sites decorated porous graphitic carbon as an efficient bifunctional oxygen catalyst for Zinc-air batteries
19
作者 Ruihui Gan Yali Wang +3 位作者 Xiangwu Zhang Yan Song Jingli Shi Chang Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期602-611,I0014,共11页
The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assiste... The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assisted method is reported to integrate numerous accessible edge Fe-Nx sites into porous graphitic carbon(named Fe-N-G) for achieving highly active and robust oxygen electrocatalysis. Silica facilitates the formation of edge Fe-Nx sites and dense graphitic domains in carbon by inhibiting iron aggregation.The purification process creates a well-developed mass transfer channel for Fe-N-G. Consequently,Fe-N-G delivers a half-wave potential of 0.859 V in ORR and an overpotential of 344 m V at10 m A cm^(-2)in OER. During long-term operation, the graphitic layers protect edge Fe-Nx sites from demetallation in ORR and synergize with Fe OOH species endowing Fe-N-G with enhanced OER activity.Density functional theory calculations reveal that the edge Fe-Nx site is superior to the in-plane Fe-Nx site in terms of OH* dissociation in ORR and OOH* formation in OER. The constructed ZAB based on Fe-N-G cathode shows a higher peak power density of 133 m W cm^(-2)and more stable cycling performance than Pt/C + RuO2counterparts. This work provides a novel strategy to obtain high-efficiency bifunctional oxygen electrocatalysts through space mediation. 展开更多
关键词 Bifunctionality EdgeFe-Nxsites Oxygen catalysis Graphitic domains zinc-air batteries
下载PDF
Schiff-base polymer derived FeCo-N-doped porous carbon flowers as bifunctional oxygen electrocatalyst for long-life rechargeable zinc-air batteries
20
作者 Yusong Deng Jiahui Zheng +3 位作者 Bei Liu Huaming Li Mei Yang Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期470-478,I0012,共10页
Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient... Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation. 展开更多
关键词 Rechargeable zinc-air batteries Oxygen electrocatalyst Schiff-base polymer Bimetallic FeCo N-doped porous carbon
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部