期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A stepwise approach to enhancing flotation of low-grade zinnwaldite through the cationic/DL-2-octanol/anionic reagent combinations: Behavior and mechanism analysis
1
作者 Zhonghua Xue Yali Feng +2 位作者 Haoran Li Jinrong Ju Xingquan Du 《International Journal of Mining Science and Technology》 SCIE EI CAS 2024年第6期881-891,共11页
In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of ... In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of low-grade zinnwaldite ore. The binary collector is a mixture of dodecylamine polyoxyethylene ether and DL-2-octanol. A binary collector is added first, followed by sodium oleate, known as a ternary collector. Under acidic conditions, the recovery of Li2O in the concentrate was increased by 8.26% with the binary collector and 13.70% with the ternary collector, compared to the dodecylamine polyoxyethylene ether. The binary collector enhanced the dispersibility of the single collector, while co-adsorption strengthened the hydrophobic nature of the zinnwaldite surface. Consequently, zinnwaldite particles,after the application of binary collector, displayed inter-particle flocculation and attachment to bubbles within 60×10^(-9)m compared to other particles. Ternary collector exhibited the capacity to lower critical micelle concentration and surface tension, subsequently inducing a denser and thicker hydrophobic layer through electrostatic forces, hydrophobic interactions, and chemical reactions. The objective of this research is to facilitate the recovery of lithium resources from low-grade ores in order to meet the needs of sustainable development. 展开更多
关键词 zinnwaldite Molecular dynamics simulation Flotation Ternary collector Extended DLVO theory
下载PDF
Use of Mineral Liberation Analysis (MLA) in the Characterization of Lithium-Bearing Micas 被引量:3
2
作者 Dirk Sandmann Jens Gutzmer 《Journal of Minerals and Materials Characterization and Engineering》 2013年第6期285-292,共8页
The capabilities and opportunities of the application of automated mineralogy for the characterization of lithium-bearing zinnwaldite-micas are critically assessed. Samples of a crushed greisen-type ore comprising mos... The capabilities and opportunities of the application of automated mineralogy for the characterization of lithium-bearing zinnwaldite-micas are critically assessed. Samples of a crushed greisen-type ore comprising mostly of quartz, topaz and zinnwaldite (Li-rich mica) were exposed to further comminution by cone crusher and high voltage pulse power fragmentation. Product properties were analyzed by using a Mineral Liberation Analyser (MLA) and the obtained mineralogical and mineral processing relevant parameters were carefully evaluated with special focus on the characteristics of zinnwaldite. The results illustrate that both samples contain a significant quantity of very fine particles that are products of comminution. The modal mineralogy in the different sieve fractions is characterized by the accumulation of minerals of low hardness in the finest fraction and the enrichment of topaz, having a high hardness, in the somewhat larger fractions. Based on the results of mineral association data for zinnwaldite, a displacement of the muscovite-quartz ratio, in comparison to the results of modal mineralogy, was observed by indicating good quartz-zinnwaldite boundary breakage and weak muscovite-zinnwaldite breakage. Liberation as well as mineral grade recovery curves indicate that fraction 1000 to +500 μm is most suitable for beneficiation. The results of this study demonstrate that SEM-based image analysis, such as MLA, can effectively be used to investigate and evaluate phyllosilicate minerals in a fast and precise way. It is shown that the results of MLA investigations, such as modal mineralogy, are in good agreement with other analytical methods such as quantitative X-ray powder diffraction. 展开更多
关键词 MINERAL LIBERATION Analysis zinnwaldite CONVENTIONAL Comminution High Voltage Pulse Power
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部