This paper presents the results of combined studies of geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes carried out upon the rhyodacite and ignimbrite of Shangshu village, Shangyu town and Shangh...This paper presents the results of combined studies of geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes carried out upon the rhyodacite and ignimbrite of Shangshu village, Shangyu town and Shanghupeng village of Jiangshan City in Zhejiang Province, along the northwestern side of the Jiangshan–Shaoxing suture. SHRIMP zircon U-Pb dating of samples in the three areas yielded weighted mean 206 Pb/238 U ages of 842.8 ± 6.9 Ma and 850.0 ± 7.3 Ma, 839 ± 9 Ma and 832.2 ± 8.1 Ma, 828.3 ± 8.5 Ma and 836.9 ± 9.9 Ma, respectively. These ages are older than the volcanic rocks of the Shangshu Formation dated at around 780 Ma distributed in Fuyang City, Hangzhou City, Kaihua County, etc. The volcanic rocks generally have high SiO2(54.08–76.80 wt%) and Al2 O3(12.40–21.31 wt%), low Fe2 O3(0.68–8.92 wt%), MgO(0.29–2.49 wt%), CaO(0.12–2.86 wt%), TiO2(0.10–1.59 wt%) and P2 O5(0.01–0.39 wt%), with variable total alkalis(K2 O + Na2 O =5.42–8.29 wt%). There exists a clear negative correlation between SiO2 and P2 O5. The volcanic rocks have A/CNK ratios of 1.03–2.77 and thus are peraluminous. They are characterized by enrichment in LREE, Rb, Ba, Zr, Hf, K, Th, La, U and depletion in Nb, Sr, P, Ti, with distinct LREE and HREE fractionation of(La/Yb)N values of 5.68–11.67, and with a moderate negative Eu anomaly(&Eu=0.58–0.89). Whole-rock geochemical data shows that the Jiangshan volcanic rocks are possibly I-type granitic rocks, even though they have some characteristics of A&S-type granites due to the magma fractional crystallization and water-rock interaction. Zircon δ18 O values are 3.97‰–5.49‰(average 4.50‰), 2.90‰–5.21‰(average 4.32‰) for ignimbrite from Shangshu village section, and Shanghupeng village section, respectively. They are slightly lower than the average δ18 O values of igneous zircons in equilibrium with mantle magmas(5.3 ± 0.6‰(2σ)), the lower δ18 O value also demonstrating the presence of high temperature water-rock interactions. The ignimbrite rocks have positive εNd(t)(4.02, 3.37, 3.91, 4.74, 2.85, 4.39, totals from the three areas) and εNd(t)(in-situ zircon)(4.3–14.6, a weighted mean of 8.4;6.6–12.7, a weighted mean of 9.0;8.1–12.0, a weighted mean of 9.5, respectively, from the three areas). In conjunction with the trace element studies, they indicate that the source region of the Jiangshan volcanic rocks was mainly composed of juvenile lower crustal material, mixed with some mantle-sourced magma. Detailed elemental and isotopic data suggest that the Jiangshan volcanic rocks were formed in a continental arc setting. There is a series of ca. 860–830 Ma volcanic rocks formed in a back-arc extensional setting in the southern margin of the eastern Jiangnan Orogen, along the northwest side of the Jiangshan–Shaoxing suture. The first stage rift-related anorogenic magmatism may have occurred as early as ca. 860 Ma in the eastern Jiangnan Orogen.展开更多
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
Abundant arc-type magmatic and metamorphic rocks exist on Earth today,which provide insights into the equilibrium state of the subduction process.However,magmatic samples generated during the initial stage of subducti...Abundant arc-type magmatic and metamorphic rocks exist on Earth today,which provide insights into the equilibrium state of the subduction process.However,magmatic samples generated during the initial stage of subduction is largely unknown.This hinders our understanding of the subduction initiation process and by inference,the onset of plate tectonics as well as the history of crustal formation.To address this issue,we carried out a comprehensive geochemical-geochronological study of a suite of Late Triassic to mid-Jurassic plutonic rocks from southern Alaska that potentially represent magmas from the initial to mature stages of arc formation.While all studied samples show typical arc-type geochemical signatures,i.e.,enrichment of large ion lithophile elements(LILEs)and depletion of high field strength elements(HFSEs)relative to the heavy rare earth elements(HREEs),the Late Triassic trondhjemites show unique geochemical features such as strongly positiveε_(Hf)(t)andε_(Nd)(t)coupled with lowerδ^(18)O(average 4.77‰±0.09‰).These signatures,along with its higher zircon saturation temperatures compared with younger plutonic rocks,are best explained by shallow partial melting of subducting high-temperature hydrothermally altered lower oceanic crust(i.e.,gabbro).If true,these surprising findings would open up new ways to study subduction initiation which would have important bearing on future research on the onset of global plate tectonics and the formation of the continental crust.展开更多
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, t...As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, temporal-spatial distribution of ancient materials, and their roles in crust evolution remain to debate. This paper presents an integrated study of zircon U-Pb ages and Hf-O isotopes for Mesoproterozoic and Paleozoic granites from the Erenhot region of central Inner Mongolia, along eastern CAOB. The intrusion of 1450 Ma syenogranite denotes that the Precambrian basement of XAB extends from Sonid Zuoqi westward to Erenhot. The 384 and 281 Ma monzogranites containing Mesoproterozoic xenocrystic zircons possess Proterozoic-dominant two-stage Hf model ages, further suggesting the wide existence of Proterozoic crust beneath western XAB. Cyclic Proterozoic crustal growth and reworking seem to show close linkages with the orogenesis during relevant supercontinent cycles. 1450-1360 Ma juvenile crustal growth at Erenhot and synchronous ancient crust reworking at Sonid Zuoqi and Abagaqi were likely resulted from retreating subduction involved in Columbia breakup, while 1.2-1.0 Ga reworking and 0.9-0.7 Ga growth events within the Erenhot basement might respond to assembly and breakup of Rodinia, respectively. Besides, our work confirms that reworking of Neoproterozoic crust played important roles during Paleozoic multi-stage accretion of CAOB.展开更多
Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representat...Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.展开更多
The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early N...The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752±7 Ma) ages show a small range in εHf(t) from 3.1 to 7.4 and tDM1(Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive eHf(t) values of 1.5 to 5.9, with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.展开更多
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geoc...The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.展开更多
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed i...The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.展开更多
The Central Asian Orogenic Belt(CAOB) was built up through protracted accretion and collision of a variety of terranes/micro-continents during Neoproterozoice Mesozoic time. To understand potential links among Paleozo...The Central Asian Orogenic Belt(CAOB) was built up through protracted accretion and collision of a variety of terranes/micro-continents during Neoproterozoice Mesozoic time. To understand potential links among Paleozoic subduction and accretionary processes that were operative during the development of the southeastern CAOB, we conducted a combined U-Pb and Hf-isotope analysis of detrital zircons from previously defined Devonian, Carboniferous and Early Permian strata in the Bengbatu area,Inner Mongolia. Detrital zircons from(meta-) sandstones in these strata commonly yield major Paleozoic age populations at ca. 300-261 Ma, 351-300 Ma and 517-419 Ma, and also give several Precambrian ages that range from 2687 Ma to 544 Ma. The youngest ages redefine the deposition of all these strata to be in the Middle Permian(Wordiane Capitanian) or later, much younger than previously considered.These ages, coupled with regional magmatic records, support an interpretation of most surrounding areas as possible detritus sources, including the Mongolian arcs to the north, the Northern Accretionary Orogen to the south, and the intervening Erenhote Hegenshan Ophiolite Belt. Zircons with magmatic ages of ca. 500-350 Ma and ca. 300-261 Ma display a large range of εHf(t) values(-13.97 to +15.31),whereas ca. 350-300 Ma zircons are dominated by positive εHf(t) values(+0.14 to +16.00). These results support the occurrence of two significant shifts of the zircon εHf(t) values, which has tectonic implications for the understanding of the Carboniferouse Permian evolution of the southeastern CAOB. A marked shift from mixed to positive zircon εHf(t) values at 350 -330 Ma likely manifests the incipient opening of the Hegenshan Ocean, due to the slab rollback of the subducting Paleo-Asian Oceanic lithosphere. Another shift from positive to mixed zircon εHf(t) values at ca. 300 Ma likely corresponds to a tectonic switch from syn-orogenic subduction-related to post-orogenic extensional setting, genetically related to the tectonic collapse of a formerly overthickened crust.展开更多
Detrital zircon U-Pb geochronology combined with Hf isotopic and trace element data from metasedimentary rocks of the Aracuai Belt in southeastern Brazil provide evidence for break-up of the Congo-Sao Francisco Craton...Detrital zircon U-Pb geochronology combined with Hf isotopic and trace element data from metasedimentary rocks of the Aracuai Belt in southeastern Brazil provide evidence for break-up of the Congo-Sao Francisco Craton. The U-Pb age spectra of detrital zircons from metasediments of the Rio Doce Group(RDG) range from 900-650 Ma and define a maximum depositional age of ca. 650 Ma. Zircon trace element and whole rock data constrain an oceanic island arc as source for the deposition setting of the protoliths to the metasediments. Zircon ε_(Hf)(t) values from these rocks are positive between +1 and +15, supporting previous evidence of a Neoproterozoic extensional phase and oceanic crust formation in a precursor basin to the Aracuai Belt. Recrystallization of detrital zircon at ca. 630 Ma is compatible with a regional metamorphic event associated with terrane accretion to the Paleoproterozoic basement after transition from an extensional to a convergent regime. The juvenile nature, age spectra and trace element composition recorded in detrital zircons of metasediments from the Aracuai Belt correspond with zircons from metasedimentary rocks and oceanic crust remnants of other orogenic belts to its south. This suggests that rifting and oceanic crust formation of the entire orogenic system, the so-called Mantiqueira Province, was contemporaneous, most likely related to the opening of a large ocean. It further indicates that the cratonic blocks involved in the orogenic evolution of the Mantiqueira Province were spatially connected as early as 900 Ma.展开更多
The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.H...The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.展开更多
The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon...The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca.381.5 Ma.The rock is metaluminous with high(Na2O + K2O) values ranging from 8.46 to 9.66 wt.%.The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies.The Wulanhada rocks exhibit high initial values of(87Sr/86Sr)t = 0.70762-0.70809,low εNd(t) =-12.76 to-12.15 values and negative values of εHf(t) =-23.49 to-17.02 with small variations in(176Hf/177Hf),(0.281873-0.282049).These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC.The Wulanhada rocks,together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions,constitute a post-collisional magmatic belt along the northern NCC.展开更多
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic ro...Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma.展开更多
The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to colli...The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to collision.However,the late Paleozoic tectonic evolutionary history,especially for the time of the ocean-continent transition,is still debated although the origin and tectonic settings for the Paleozoic volcanic,felsic igneous magmatism in TO and reginal geology have been done in the last decades.In contrast,the researches on the mafic dykes in TO was not systematically carried out till now.Reginal-scale mafic dykes are commonly regarded as the products created in a extensional setting,and used to identify the major tectonic events such as rifting and continental break-up and further trace the mantle natures and geodynamic mechanism(Halls,1982;Bleeker and Ernst,2006;Li et al.,2008;Ernst et al.,2010;Srivastava,2011;Hou,2012;Peng,2015;Peng et al.,2019).There are widespread late Paleozoic mafic dykes beside the huge of intermediate-acid igneous rocks in the TO,being an idea object to reveal the extensional events,tectonic evolution and the mantle nature and geodynamic processes.We present the ICPMS in situ zircon U–Pb dating,Lu-Hf and whole-rock Sr-Nd isotopes as well as the geochemistry data for these mafic dykes to better constraint their petrogenesis and mantle nature.New zircon U-Pb dating for 12 samples from the representative basic dykes and basalts yield three distinct stages of^332 Ma,316–302 Ma and 288–282 Ma,respectively.In which,the first stage of mafic dykes is mainly occurred in both East Tianshan Orogen(ETO)and West Tianshan Orogen(WTO),and composed of dolerite with minor basalts.The second stage of mafic dyke also can be found in both ETO and WTO.However,in contrast to the first stage of mafic dykes,they have relatively variable rock types from the dolerite/or gabbros to gabbroic diorite.The third stage of mafic dykes are slightly intermediate in composition,and chiefly consist of andesitic-basaltic dolerite with some diorites.They are widely developed not only in both ETO and WTO,but also in the Beishan area to the east of the ETO,indicating a large-scale mafic magmatism in Tianshan and adjacent areas.展开更多
The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
The cratonization history of the North China Craton(NCC)and the nature of tectonothermal events are still highly controversial.Tonalite-trondhjemite-granodiorite(TTG)gneisses,as the dominant lithological assemblages i...The cratonization history of the North China Craton(NCC)and the nature of tectonothermal events are still highly controversial.Tonalite-trondhjemite-granodiorite(TTG)gneisses,as the dominant lithological assemblages in Archean metamorphic terranes,can provide significant clues to the magmatic and metamorphic evolution of Precambrian crust.This study presents zircon laser-ablation inductively-coupled-plasma mass spectrometry U–Pb ages,trace-element,and in-situ LA-MC-ICPMS zircon Hf isotope data for the TTG gneisses from the Bengbu-Wuhe area on the southeastern margin of the NCC.Cathodoluminescence images and trace elements indicated that magmatic zircons display the characteristics of euhedral-subhedral crystals with oscillatory growth zoning structures,high RREE contents,marked Ce positive anomalies,and Pr–Eu negative anomalies.The metamorphic zircons display the spherical-oval crystals with distinct core-rim structures,high and homogeneous luminescent intensity,lower RREE,Nb,Ta,Hf contents,relative flat REE patterns,weak Ce positive anomalies,and Pr-Eu negative anomalies.The Ti–in–zircon geothermometer data indicate that the crystallization temperature of the TTG gneiss ranged from 754 to 868℃.Zircon U–Pb ages indicate that the TTG gneisses formed at 2.79–2.77 Ga and 2.50 Ga and underwent metamorphism at 2.57–2.52 Ga.The Hf isotopic data indicate that the magmatic zircons exhibit high,positive eHf(t)values close to those of the coeval depleted mantle,whereas the metamorphic zircons exhibit negative or nil eHf(t)values.This implies that the TTG gneisses were derived from the partial melting of the~2.9–2.6 Ga juvenile crustal sources mixed with~3.0–2.8 Ga ancient crustal materials.Combined with the regional tectonic evolution,we propose that the metamorphic basement at the southeastern margin of the NCC underwent episodic crustal growth at~2.7 and~2.5 Ga and subsequently underwent crustal reworking or re-melting of the ancient crust during the Neoarchean.The Neoarchean TTG gneisses might have been derived from the partial melting of lower crustal materials related to plate subduction.展开更多
基金supported by Natural Science Fund Project(41902242)Geological Survey Project of China Geological Survey(DD20190370 and DD20190009)。
文摘This paper presents the results of combined studies of geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes carried out upon the rhyodacite and ignimbrite of Shangshu village, Shangyu town and Shanghupeng village of Jiangshan City in Zhejiang Province, along the northwestern side of the Jiangshan–Shaoxing suture. SHRIMP zircon U-Pb dating of samples in the three areas yielded weighted mean 206 Pb/238 U ages of 842.8 ± 6.9 Ma and 850.0 ± 7.3 Ma, 839 ± 9 Ma and 832.2 ± 8.1 Ma, 828.3 ± 8.5 Ma and 836.9 ± 9.9 Ma, respectively. These ages are older than the volcanic rocks of the Shangshu Formation dated at around 780 Ma distributed in Fuyang City, Hangzhou City, Kaihua County, etc. The volcanic rocks generally have high SiO2(54.08–76.80 wt%) and Al2 O3(12.40–21.31 wt%), low Fe2 O3(0.68–8.92 wt%), MgO(0.29–2.49 wt%), CaO(0.12–2.86 wt%), TiO2(0.10–1.59 wt%) and P2 O5(0.01–0.39 wt%), with variable total alkalis(K2 O + Na2 O =5.42–8.29 wt%). There exists a clear negative correlation between SiO2 and P2 O5. The volcanic rocks have A/CNK ratios of 1.03–2.77 and thus are peraluminous. They are characterized by enrichment in LREE, Rb, Ba, Zr, Hf, K, Th, La, U and depletion in Nb, Sr, P, Ti, with distinct LREE and HREE fractionation of(La/Yb)N values of 5.68–11.67, and with a moderate negative Eu anomaly(&Eu=0.58–0.89). Whole-rock geochemical data shows that the Jiangshan volcanic rocks are possibly I-type granitic rocks, even though they have some characteristics of A&S-type granites due to the magma fractional crystallization and water-rock interaction. Zircon δ18 O values are 3.97‰–5.49‰(average 4.50‰), 2.90‰–5.21‰(average 4.32‰) for ignimbrite from Shangshu village section, and Shanghupeng village section, respectively. They are slightly lower than the average δ18 O values of igneous zircons in equilibrium with mantle magmas(5.3 ± 0.6‰(2σ)), the lower δ18 O value also demonstrating the presence of high temperature water-rock interactions. The ignimbrite rocks have positive εNd(t)(4.02, 3.37, 3.91, 4.74, 2.85, 4.39, totals from the three areas) and εNd(t)(in-situ zircon)(4.3–14.6, a weighted mean of 8.4;6.6–12.7, a weighted mean of 9.0;8.1–12.0, a weighted mean of 9.5, respectively, from the three areas). In conjunction with the trace element studies, they indicate that the source region of the Jiangshan volcanic rocks was mainly composed of juvenile lower crustal material, mixed with some mantle-sourced magma. Detailed elemental and isotopic data suggest that the Jiangshan volcanic rocks were formed in a continental arc setting. There is a series of ca. 860–830 Ma volcanic rocks formed in a back-arc extensional setting in the southern margin of the eastern Jiangnan Orogen, along the northwest side of the Jiangshan–Shaoxing suture. The first stage rift-related anorogenic magmatism may have occurred as early as ca. 860 Ma in the eastern Jiangnan Orogen.
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金This work was supported by the National Natural Science Foundation of China(41688103)the Ministry of Science and Technology of China(2016YFC0600109).
文摘Abundant arc-type magmatic and metamorphic rocks exist on Earth today,which provide insights into the equilibrium state of the subduction process.However,magmatic samples generated during the initial stage of subduction is largely unknown.This hinders our understanding of the subduction initiation process and by inference,the onset of plate tectonics as well as the history of crustal formation.To address this issue,we carried out a comprehensive geochemical-geochronological study of a suite of Late Triassic to mid-Jurassic plutonic rocks from southern Alaska that potentially represent magmas from the initial to mature stages of arc formation.While all studied samples show typical arc-type geochemical signatures,i.e.,enrichment of large ion lithophile elements(LILEs)and depletion of high field strength elements(HFSEs)relative to the heavy rare earth elements(HREEs),the Late Triassic trondhjemites show unique geochemical features such as strongly positiveε_(Hf)(t)andε_(Nd)(t)coupled with lowerδ^(18)O(average 4.77‰±0.09‰).These signatures,along with its higher zircon saturation temperatures compared with younger plutonic rocks,are best explained by shallow partial melting of subducting high-temperature hydrothermally altered lower oceanic crust(i.e.,gabbro).If true,these surprising findings would open up new ways to study subduction initiation which would have important bearing on future research on the onset of global plate tectonics and the formation of the continental crust.
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
基金Projects(41873035,41802053) supported by the National Natural Science Foundation of ChinaProject(ZD2021015) supported by the Science and Technology Project of Hebei Education Department,China+1 种基金Project(SCRM2116) supported by the Opening Foundation of Hebei Key Laboratory of Strategic Critical Mineral Resources,ChinaProject(202045004) supported by the Scientific Research Starting Foundation of Central South University,China。
文摘As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, temporal-spatial distribution of ancient materials, and their roles in crust evolution remain to debate. This paper presents an integrated study of zircon U-Pb ages and Hf-O isotopes for Mesoproterozoic and Paleozoic granites from the Erenhot region of central Inner Mongolia, along eastern CAOB. The intrusion of 1450 Ma syenogranite denotes that the Precambrian basement of XAB extends from Sonid Zuoqi westward to Erenhot. The 384 and 281 Ma monzogranites containing Mesoproterozoic xenocrystic zircons possess Proterozoic-dominant two-stage Hf model ages, further suggesting the wide existence of Proterozoic crust beneath western XAB. Cyclic Proterozoic crustal growth and reworking seem to show close linkages with the orogenesis during relevant supercontinent cycles. 1450-1360 Ma juvenile crustal growth at Erenhot and synchronous ancient crust reworking at Sonid Zuoqi and Abagaqi were likely resulted from retreating subduction involved in Columbia breakup, while 1.2-1.0 Ga reworking and 0.9-0.7 Ga growth events within the Erenhot basement might respond to assembly and breakup of Rodinia, respectively. Besides, our work confirms that reworking of Neoproterozoic crust played important roles during Paleozoic multi-stage accretion of CAOB.
基金supported by the National Key Basic Research Program(2012CB416700,2007CB411408),a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences in Wuhan
文摘Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.
基金financially supported by the National Natural Science Foundation of China(grants No.41173065 and 40703012)the China Geological Survey(grants No.1212011121075, 12120114020901,12120113094000 and 1212011120332)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the People's Republic of China(grant No.J1403)
文摘The Miyun area of Beijing is located in the northern part of the North China Craton (NCC) and includes a variety of Archean granitoids and metamorphic rocks. Magmatic domains in zircon from a tonalite reveal Early Neoarchean (2752±7 Ma) ages show a small range in εHf(t) from 3.1 to 7.4 and tDM1(Hf) from 2742 to 2823 Ma, similar to their U-Pb ages, indicating derivation from a depleted mantle source only a short time prior to crystallization. SHRIMP zircon ages of granite, gneiss, amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to 2496 Ma. They also record metamorphic events at ca. 2.50 Ga, 2.44 Ga and 1.82 Ga, showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC. Positive eHf(t) values of 1.5 to 5.9, with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean. Late Paleoproterozoic metamorphism developed widely in the NCC, not only in the Trans-North China Orogen, but also in areas of Eastern and Western Blocks, which suggest that the late Paleoproterozoic was the assembly of different micro-continents, which resulted in the final consolidation to form the NCC, and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K1019) granted by the Institute of Mineral Resources,Chinese Academy of Geological Sciencesthe ministry of land and resources public welfare industry research project of China (200911007-6)the national crisis's mine resources prospecting project of China (20089949)
文摘The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.
基金supported by geological survey projects of the China Geological Survey (1212011120863, 12120114039401, 12120114005901 and 12120115029401)
文摘The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41730213, 41190075, 41190070)the Hong Kong Research Grants Council General Research Fund (17301915)the HKU Seed Funding Programme for Basic Research (201611159210)
文摘The Central Asian Orogenic Belt(CAOB) was built up through protracted accretion and collision of a variety of terranes/micro-continents during Neoproterozoice Mesozoic time. To understand potential links among Paleozoic subduction and accretionary processes that were operative during the development of the southeastern CAOB, we conducted a combined U-Pb and Hf-isotope analysis of detrital zircons from previously defined Devonian, Carboniferous and Early Permian strata in the Bengbatu area,Inner Mongolia. Detrital zircons from(meta-) sandstones in these strata commonly yield major Paleozoic age populations at ca. 300-261 Ma, 351-300 Ma and 517-419 Ma, and also give several Precambrian ages that range from 2687 Ma to 544 Ma. The youngest ages redefine the deposition of all these strata to be in the Middle Permian(Wordiane Capitanian) or later, much younger than previously considered.These ages, coupled with regional magmatic records, support an interpretation of most surrounding areas as possible detritus sources, including the Mongolian arcs to the north, the Northern Accretionary Orogen to the south, and the intervening Erenhote Hegenshan Ophiolite Belt. Zircons with magmatic ages of ca. 500-350 Ma and ca. 300-261 Ma display a large range of εHf(t) values(-13.97 to +15.31),whereas ca. 350-300 Ma zircons are dominated by positive εHf(t) values(+0.14 to +16.00). These results support the occurrence of two significant shifts of the zircon εHf(t) values, which has tectonic implications for the understanding of the Carboniferouse Permian evolution of the southeastern CAOB. A marked shift from mixed to positive zircon εHf(t) values at 350 -330 Ma likely manifests the incipient opening of the Hegenshan Ocean, due to the slab rollback of the subducting Paleo-Asian Oceanic lithosphere. Another shift from positive to mixed zircon εHf(t) values at ca. 300 Ma likely corresponds to a tectonic switch from syn-orogenic subduction-related to post-orogenic extensional setting, genetically related to the tectonic collapse of a formerly overthickened crust.
基金funding from CNPq(401334/2012-0-302058/2015-0-402852/2012-5)FAPEMIG(APQ03943-RPQ-0067-10-RDP00063-10)grants
文摘Detrital zircon U-Pb geochronology combined with Hf isotopic and trace element data from metasedimentary rocks of the Aracuai Belt in southeastern Brazil provide evidence for break-up of the Congo-Sao Francisco Craton. The U-Pb age spectra of detrital zircons from metasediments of the Rio Doce Group(RDG) range from 900-650 Ma and define a maximum depositional age of ca. 650 Ma. Zircon trace element and whole rock data constrain an oceanic island arc as source for the deposition setting of the protoliths to the metasediments. Zircon ε_(Hf)(t) values from these rocks are positive between +1 and +15, supporting previous evidence of a Neoproterozoic extensional phase and oceanic crust formation in a precursor basin to the Aracuai Belt. Recrystallization of detrital zircon at ca. 630 Ma is compatible with a regional metamorphic event associated with terrane accretion to the Paleoproterozoic basement after transition from an extensional to a convergent regime. The juvenile nature, age spectra and trace element composition recorded in detrital zircons of metasediments from the Aracuai Belt correspond with zircons from metasedimentary rocks and oceanic crust remnants of other orogenic belts to its south. This suggests that rifting and oceanic crust formation of the entire orogenic system, the so-called Mantiqueira Province, was contemporaneous, most likely related to the opening of a large ocean. It further indicates that the cratonic blocks involved in the orogenic evolution of the Mantiqueira Province were spatially connected as early as 900 Ma.
基金funded by the Basic Scientific Research Fund of the Institute of Geology, Chinese Academy of Geological Sciences (Grant No. J2103)National Key Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2017YFC0601301)+1 种基金the National Natural Science Foundation of China (Grant No. 41972224)the China Geological Survey (Grant No. DD2019004)。
文摘The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.
基金supported by the SinoProbe 04-02,Natural Science Foundation of China(40603011)Government's Scientific Research Foundation of Inner Mongolia(05-6-YS2)
文摘The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca.381.5 Ma.The rock is metaluminous with high(Na2O + K2O) values ranging from 8.46 to 9.66 wt.%.The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies.The Wulanhada rocks exhibit high initial values of(87Sr/86Sr)t = 0.70762-0.70809,low εNd(t) =-12.76 to-12.15 values and negative values of εHf(t) =-23.49 to-17.02 with small variations in(176Hf/177Hf),(0.281873-0.282049).These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC.The Wulanhada rocks,together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions,constitute a post-collisional magmatic belt along the northern NCC.
基金The Everest Scientific Research Program of Chengdu University of Technology, China financially supported this study
文摘Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma.
基金co-funded by the Land and Resources Survey Project of China(Grant no.12120113042200)National Natural Science Foundation of China(41421002)the MOST Special Fund from State Key Laboratory of Continental Dynamics,Northwest University(201210133)
文摘The Tianshan Orogen(TO)is one of the largest typical accretionary orogenic belts in the world.Of which,the late Paleozoic was a critical era to understand the tectonic and geodynamic transition from accretion to collision.However,the late Paleozoic tectonic evolutionary history,especially for the time of the ocean-continent transition,is still debated although the origin and tectonic settings for the Paleozoic volcanic,felsic igneous magmatism in TO and reginal geology have been done in the last decades.In contrast,the researches on the mafic dykes in TO was not systematically carried out till now.Reginal-scale mafic dykes are commonly regarded as the products created in a extensional setting,and used to identify the major tectonic events such as rifting and continental break-up and further trace the mantle natures and geodynamic mechanism(Halls,1982;Bleeker and Ernst,2006;Li et al.,2008;Ernst et al.,2010;Srivastava,2011;Hou,2012;Peng,2015;Peng et al.,2019).There are widespread late Paleozoic mafic dykes beside the huge of intermediate-acid igneous rocks in the TO,being an idea object to reveal the extensional events,tectonic evolution and the mantle nature and geodynamic processes.We present the ICPMS in situ zircon U–Pb dating,Lu-Hf and whole-rock Sr-Nd isotopes as well as the geochemistry data for these mafic dykes to better constraint their petrogenesis and mantle nature.New zircon U-Pb dating for 12 samples from the representative basic dykes and basalts yield three distinct stages of^332 Ma,316–302 Ma and 288–282 Ma,respectively.In which,the first stage of mafic dykes is mainly occurred in both East Tianshan Orogen(ETO)and West Tianshan Orogen(WTO),and composed of dolerite with minor basalts.The second stage of mafic dyke also can be found in both ETO and WTO.However,in contrast to the first stage of mafic dykes,they have relatively variable rock types from the dolerite/or gabbros to gabbroic diorite.The third stage of mafic dykes are slightly intermediate in composition,and chiefly consist of andesitic-basaltic dolerite with some diorites.They are widely developed not only in both ETO and WTO,but also in the Beishan area to the east of the ETO,indicating a large-scale mafic magmatism in Tianshan and adjacent areas.
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金supported by the National Natural Science Foundation of China(Nos.41303041 and41763005)Open Fund(Nos.Z1909,Z1912,RGET1804,15LCD08)of the State Key Laboratory of Nuclear Resources and Environment+1 种基金Fundamental Science on Radioactive Geology and Exploration Technology LaboratoryState Key Laboratory of Continental Dynamics。
文摘The cratonization history of the North China Craton(NCC)and the nature of tectonothermal events are still highly controversial.Tonalite-trondhjemite-granodiorite(TTG)gneisses,as the dominant lithological assemblages in Archean metamorphic terranes,can provide significant clues to the magmatic and metamorphic evolution of Precambrian crust.This study presents zircon laser-ablation inductively-coupled-plasma mass spectrometry U–Pb ages,trace-element,and in-situ LA-MC-ICPMS zircon Hf isotope data for the TTG gneisses from the Bengbu-Wuhe area on the southeastern margin of the NCC.Cathodoluminescence images and trace elements indicated that magmatic zircons display the characteristics of euhedral-subhedral crystals with oscillatory growth zoning structures,high RREE contents,marked Ce positive anomalies,and Pr–Eu negative anomalies.The metamorphic zircons display the spherical-oval crystals with distinct core-rim structures,high and homogeneous luminescent intensity,lower RREE,Nb,Ta,Hf contents,relative flat REE patterns,weak Ce positive anomalies,and Pr-Eu negative anomalies.The Ti–in–zircon geothermometer data indicate that the crystallization temperature of the TTG gneiss ranged from 754 to 868℃.Zircon U–Pb ages indicate that the TTG gneisses formed at 2.79–2.77 Ga and 2.50 Ga and underwent metamorphism at 2.57–2.52 Ga.The Hf isotopic data indicate that the magmatic zircons exhibit high,positive eHf(t)values close to those of the coeval depleted mantle,whereas the metamorphic zircons exhibit negative or nil eHf(t)values.This implies that the TTG gneisses were derived from the partial melting of the~2.9–2.6 Ga juvenile crustal sources mixed with~3.0–2.8 Ga ancient crustal materials.Combined with the regional tectonic evolution,we propose that the metamorphic basement at the southeastern margin of the NCC underwent episodic crustal growth at~2.7 and~2.5 Ga and subsequently underwent crustal reworking or re-melting of the ancient crust during the Neoarchean.The Neoarchean TTG gneisses might have been derived from the partial melting of lower crustal materials related to plate subduction.