The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic p...We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.展开更多
The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and gar...The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.展开更多
Zircon LA-ICP-MS U-Pb age, geochemical and Nd isotopic data are presented for a newly recognized high-Mg dioritic dike from Haicheng, Liaodong Peninsula, NE China, to constrain its petrogenesis. The zircons from the h...Zircon LA-ICP-MS U-Pb age, geochemical and Nd isotopic data are presented for a newly recognized high-Mg dioritic dike from Haicheng, Liaodong Peninsula, NE China, to constrain its petrogenesis. The zircons from the high-Mg diorite exhibit striped absorption and oscillatory growth zoning in the cathodoluminescence (CL) images, and have high Th/U ratios (0. 05-0.9), indicating a magma origin. Zircon LA-ICP-MS U-Pb dating indicates that 206pb/238U ages of 12 spots of zircons are between 167 Ma and 178 Ma, yielding a weighted mean 206pb/238U age of 172 + 2 Ma (MSWD =4. 1 ), which represents the forming age of the high-Mg dioritic dike, i. e. Middle Jurassic. Geochemically, the samples have SiO2 =55.4-60. 6 wt. % , Na20 =2. 2-2.76 wt. % , K20 = 1.32-2. 02 wt. % and (Na2O + K2O) =3.82--4. 47 wt. %, belonging to sub-alkaline series and displaying a calc-alkaline evolutionary trend. They are characterized by high MgO (4. 75-6.85 wt. % ), Mg# (55-61), Cr(130-262 ppm), Ni(63-130 ppm), Sr(568-857 ppm), and Ba(484-1 130 ppm) contents, with geochemical features analogous to those of high-Mg adakites. They show variable end (t) values ( - 1.3 to - 3.9) , with a weighted value of - 2. 7, which plot intermediately between the field of the ancient continental crust and the depleted mantle source, indicating that both the lower crust and mantle source are necessary for the generation of the parent magma of the Haicheng high-Mg diorites. The Haicheng high-Mg dioritic dike in the Liaodong Peninsula and the Jurassic magmatism in the eastern North China Craton formed under a continental crustal thickening setting that may be related to subduction of the Paleo-Pacific oceanic plate.展开更多
A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolu...A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolution of this region.However,the study of the granodioritic pluton in East Junggar is particularly weak.展开更多
The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-cal...The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.展开更多
Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of v...Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.展开更多
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetall...Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.展开更多
Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Centr...Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.展开更多
The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most i...The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most important super large deposits of the Truong Son Fold Belt.Our LA-ICP-MS zircon U-Pb dating results show that granodiorite porphyry samples from the Sepon deposit have ages of 302.1-4-2.9 Ma, which is a crucial phase for magmatic-tectonical activities from the Late Carboniferous to Early Permian and has avital influence on the mineralization of copper and gold.Zircon from granodiorite porphyry yields εHf (t)values of 4.32 to 9.64,and TDM2 has an average age of 914 Ma,suggesting that the source of the granodiorite porphyry in the region were mainly mantle components but underwent mixing and contamination of crust materials.The Ce^4+/Ce^3+ value of zircon in the granodiorite porphyry varys greatly from 2.4 to 1438.29,which shows magma mixing might occur.Considering the characteristics of trace elements in the zircon and the whole rock geochemical characteristics of intrusion rocks as well as the characteristics of regional volcanic-sedimentary association,it is indicated that the tectonic setting may be the continental arc environment.The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma with coming from deep sources in the subduction process of the Paleotethys Ocean,forming porphyry Mo-Cu,skam Cu-Au mineralization and a hydrothermal sedimentary-hosted Au mineralization in the wall rocks.展开更多
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide ...Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.展开更多
Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed with...Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed within some continental LIPs are felsic and rnafic plutonic and volcanic rocks. Although their volumes are minor compared to the flood basalts, the plutonic rocks of continental LIPs are often associated with economic deposits of precious metals. Within the Permian Tarim LIP of NW China, there are at least two layered ultramafic-mafic intrusions (e.g. Wajilitag and Piqiang) contain economically important Fe- Ti-V oxide deposits. Spatially associated with these layered ultramafic-mafic intrusions are syenitic and granitic plutons, which have chemical characteristics of A- type granitoids.展开更多
The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host t...The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host trachydacite with the aim of constraining its petrogenesis,magma source and regional tectonic setting.LA-ICP-MS zircon U-Pb dating indicates that the trachydacite was formed in 32. 68 ± 0. 50 Ma( MSWD =1. 6),i. e.,Oligocene. The trachydacite is rich in potassium and poor in Mg#( 5. 10-9. 70),belonging to the peraluminous shoshonite series. The rocks are enriched in LILE( large ion lithophile elements) Rb,Ba,K and LREE,depleted in HFSE( high field strength elements) Nb,Ta,P,Ti,with high Sr and low Y and Yb,having the characteristics of the C type adakite. It is calculated that the initial εHf( t) of the zircons range from-0. 92 to 2. 07 and their two-stage Hf model ages T_(DM2) range from 978 Ma to 1 169 Ma. The magma source should be mainly the partially melt mafic rocks of the thickened Middle Neoproterozoic lower crust of the Northern Qiangtang massif with the addition of ancient aluminosilica material in the melting process. The rocks formed in the tectonic setting of delamination of lithosphere and extension of the thickened crust. During the period of 40-32 Ma,large-scale potassium rich alkaline magmatism occurred in this area. The porphyry metallogenesis is related to the magmatic activities in this period.展开更多
Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North Chin...Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North China Craton(NCC)(Zhang et al,2007,2009).Late Carboniferous Dongwanzi ultramafic-mafic cumulate complex occurs in northern margin of the NCC and is intruded by a syenite with depleted Sr-Nd isotopes (Ma et al.,2014).However,the age and petrogenesis of this syenite is poorly constrained.In this study,we present new petrological,zircon U-Pb and Hf isotopic data of the Dongwanzi syenite,in order to put insights on its formation age and petrogenetic relationship with cumulates.展开更多
Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to ...Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to assess mantle source characteristics and crustal assimilation of the parental magma of the Sidingheishan intrusion. We have also discussed the tectonic evolution of the southern margin of the Central Asian Orogenic belt in the Late Paleozoic.展开更多
Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) an...Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) and Panjal traps (-290 Ma) (Shellnutt et al., 2015). The Emeishan and Tarim LIPs in China are both known for the presence of several magmatic Fe-Ti-V oxide deposits hosted in layered mafic- ultramafic intrusions. The origin of such magmatic Fe-Ti- V oxide deposits is enigmatic. One of the long-lasting debates is the mechanism by which large amounts of Fe-Ti oxides accumulated in the layered intrusions. Regardless of mechanism, there is still considerable debate regarding the mantle source compositions of the Fe-Ti-V oxide ore- bearing intrusions, in the Tarim LIP, a giant Fe-Ti-V oxide deposit is hosted by the Piqiang layered intrusion at the northern margin of the Tarim block. This intrusion consists mainly of gabbro and minor plagioclase-bearing clinopyroxenite and anorthosite (Fig. l a). For this study we present new SHRIMP zircon U-Pb age and whole-rock geochemical data for the Piqiang layered gabbroic intrusion to evaluate the nature of its possible source compositions, which in turn aids in understanding the formation of the giant Fe-Ti-V oxide deposit in the plume- related LIPs.展开更多
Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the dee...Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the deep processes of the India-Eurasia collision and the uplift and evolution of the Tibetan Plateau. Although high-potassic volcanic rocks are also exposed in the western Lhasa terrane, their formation time is still uncertain for the lack of reliable dating. We carried out zircon U-Pb geochronological study on the Langjiu Formation volcanic rocks, which are part of the Early Cretaceous Zenong group volcanic rocks based on 1:250000 scale Shiquanhe regional geological survey report, in the Shiquanhe area of the western Lhasa terrane. These new age data not only offer chronological basis for the regional stratigraphic correlation and classification, but also provide an essential opportunity for revealing signatures of magmatic pulses hidden in the deep crust of the Lhasa terrane.展开更多
This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age o...This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.展开更多
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Arch...Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.展开更多
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic di...The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.展开更多
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
基金financially supported by Geological Survey of China Projects(Nos.1212010814054,1212010911049)Ministry of land and resources of public welfare scientific research(No.201311116)
文摘We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos. 41030423,41072068 and 40872071)National Basic Research Program of China (Grant No. 2006CB403502)+2 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University (Grant No. BJ091349)National Found for Fostering Talents of Basic Sciences (Grant No. J0830519)Graduate Innovation and Creativity Funds of Northwest University,China (Grant No. 10YZZ24)
文摘The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.
基金financially supported by the National Natural Science Foundation of China ( Grant No. 41202136)the China Geological Survey Program ( Grant No. 12120114021601)+1 种基金the Basic Scientific Research Foundation of the Institute of Geology, CAGS ( J1301)Undergraduates Innovating Experimentation Project of Jilin University ( 2010C61164)
文摘Zircon LA-ICP-MS U-Pb age, geochemical and Nd isotopic data are presented for a newly recognized high-Mg dioritic dike from Haicheng, Liaodong Peninsula, NE China, to constrain its petrogenesis. The zircons from the high-Mg diorite exhibit striped absorption and oscillatory growth zoning in the cathodoluminescence (CL) images, and have high Th/U ratios (0. 05-0.9), indicating a magma origin. Zircon LA-ICP-MS U-Pb dating indicates that 206pb/238U ages of 12 spots of zircons are between 167 Ma and 178 Ma, yielding a weighted mean 206pb/238U age of 172 + 2 Ma (MSWD =4. 1 ), which represents the forming age of the high-Mg dioritic dike, i. e. Middle Jurassic. Geochemically, the samples have SiO2 =55.4-60. 6 wt. % , Na20 =2. 2-2.76 wt. % , K20 = 1.32-2. 02 wt. % and (Na2O + K2O) =3.82--4. 47 wt. %, belonging to sub-alkaline series and displaying a calc-alkaline evolutionary trend. They are characterized by high MgO (4. 75-6.85 wt. % ), Mg# (55-61), Cr(130-262 ppm), Ni(63-130 ppm), Sr(568-857 ppm), and Ba(484-1 130 ppm) contents, with geochemical features analogous to those of high-Mg adakites. They show variable end (t) values ( - 1.3 to - 3.9) , with a weighted value of - 2. 7, which plot intermediately between the field of the ancient continental crust and the depleted mantle source, indicating that both the lower crust and mantle source are necessary for the generation of the parent magma of the Haicheng high-Mg diorites. The Haicheng high-Mg dioritic dike in the Liaodong Peninsula and the Jurassic magmatism in the eastern North China Craton formed under a continental crustal thickening setting that may be related to subduction of the Paleo-Pacific oceanic plate.
基金supported financially by the NSFC projects(Grant Nos.U1403291,41830216,and 41802074)projects of the China Geological Survey(Grant Nos.DD20160024,DD20160123,and DD20160345)IGCP 662.
文摘A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolution of this region.However,the study of the granodioritic pluton in East Junggar is particularly weak.
文摘The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.
文摘Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.
基金supported by the National Natural Science Foundation of China (Grant No. 40930419)the National Special Research Programs for Non-Profit Trades (Sponsored by MLR, Grant Nos. 200911007 and 200811114)Open Foundation of State Key laboratory of Geological Processes and Mineral Resources, School of the Earth Sciences and Resources, China University of Geosciences, Beijing (Grant No. GPMR201029)
文摘Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.
基金co-supported by the National Natural Science Foundation of China(grant No.41302070)the Fundamental Research Funds for the Central Universities (grants No.310827172004 and 310827173401)Geological Exploration Fund Project of Qinghai Province (grant No.2012209)
文摘Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.
基金the National Science Foundation of China (41373036, 41002027)the Geological Survey of China Geological Survey Project (121201103000150006,121201066307).
文摘The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most important super large deposits of the Truong Son Fold Belt.Our LA-ICP-MS zircon U-Pb dating results show that granodiorite porphyry samples from the Sepon deposit have ages of 302.1-4-2.9 Ma, which is a crucial phase for magmatic-tectonical activities from the Late Carboniferous to Early Permian and has avital influence on the mineralization of copper and gold.Zircon from granodiorite porphyry yields εHf (t)values of 4.32 to 9.64,and TDM2 has an average age of 914 Ma,suggesting that the source of the granodiorite porphyry in the region were mainly mantle components but underwent mixing and contamination of crust materials.The Ce^4+/Ce^3+ value of zircon in the granodiorite porphyry varys greatly from 2.4 to 1438.29,which shows magma mixing might occur.Considering the characteristics of trace elements in the zircon and the whole rock geochemical characteristics of intrusion rocks as well as the characteristics of regional volcanic-sedimentary association,it is indicated that the tectonic setting may be the continental arc environment.The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma with coming from deep sources in the subduction process of the Paleotethys Ocean,forming porphyry Mo-Cu,skam Cu-Au mineralization and a hydrothermal sedimentary-hosted Au mineralization in the wall rocks.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41603053)the National Key R & D Program of China (No. 2018YFC0604206)
文摘Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.
基金financially supported by the National Natural Science Foundation of China (Grant No.41703030)research grants from the East China University of Technology (Grants No.DHBK2015323 and RGET1504)the Jiangxi Provincial Department of Education (Grant No.GJJ150556)
文摘Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed within some continental LIPs are felsic and rnafic plutonic and volcanic rocks. Although their volumes are minor compared to the flood basalts, the plutonic rocks of continental LIPs are often associated with economic deposits of precious metals. Within the Permian Tarim LIP of NW China, there are at least two layered ultramafic-mafic intrusions (e.g. Wajilitag and Piqiang) contain economically important Fe- Ti-V oxide deposits. Spatially associated with these layered ultramafic-mafic intrusions are syenitic and granitic plutons, which have chemical characteristics of A- type granitoids.
基金Supported by Project of China Geological Survey(No.12120114080901)
文摘The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host trachydacite with the aim of constraining its petrogenesis,magma source and regional tectonic setting.LA-ICP-MS zircon U-Pb dating indicates that the trachydacite was formed in 32. 68 ± 0. 50 Ma( MSWD =1. 6),i. e.,Oligocene. The trachydacite is rich in potassium and poor in Mg#( 5. 10-9. 70),belonging to the peraluminous shoshonite series. The rocks are enriched in LILE( large ion lithophile elements) Rb,Ba,K and LREE,depleted in HFSE( high field strength elements) Nb,Ta,P,Ti,with high Sr and low Y and Yb,having the characteristics of the C type adakite. It is calculated that the initial εHf( t) of the zircons range from-0. 92 to 2. 07 and their two-stage Hf model ages T_(DM2) range from 978 Ma to 1 169 Ma. The magma source should be mainly the partially melt mafic rocks of the thickened Middle Neoproterozoic lower crust of the Northern Qiangtang massif with the addition of ancient aluminosilica material in the melting process. The rocks formed in the tectonic setting of delamination of lithosphere and extension of the thickened crust. During the period of 40-32 Ma,large-scale potassium rich alkaline magmatism occurred in this area. The porphyry metallogenesis is related to the magmatic activities in this period.
基金supported by the National Science Foundation of China(grants 41302042 and 41672217)the Fundamental Research Funds for the Central Universities(grants N170104022).
文摘Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North China Craton(NCC)(Zhang et al,2007,2009).Late Carboniferous Dongwanzi ultramafic-mafic cumulate complex occurs in northern margin of the NCC and is intruded by a syenite with depleted Sr-Nd isotopes (Ma et al.,2014).However,the age and petrogenesis of this syenite is poorly constrained.In this study,we present new petrological,zircon U-Pb and Hf isotopic data of the Dongwanzi syenite,in order to put insights on its formation age and petrogenetic relationship with cumulates.
基金financially supported by the National Science Foundation of China(grants No.41402070, 41372101 and 41602082)China Geological Survey (grant No.DD20160346)
文摘Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to assess mantle source characteristics and crustal assimilation of the parental magma of the Sidingheishan intrusion. We have also discussed the tectonic evolution of the southern margin of the Central Asian Orogenic belt in the Late Paleozoic.
基金financially supported by the National Natural Science Foundation of China(grant No.41703030)research grants from the East China University of Technology(grants No.DHBK2015323 and RGET1504)
文摘Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) and Panjal traps (-290 Ma) (Shellnutt et al., 2015). The Emeishan and Tarim LIPs in China are both known for the presence of several magmatic Fe-Ti-V oxide deposits hosted in layered mafic- ultramafic intrusions. The origin of such magmatic Fe-Ti- V oxide deposits is enigmatic. One of the long-lasting debates is the mechanism by which large amounts of Fe-Ti oxides accumulated in the layered intrusions. Regardless of mechanism, there is still considerable debate regarding the mantle source compositions of the Fe-Ti-V oxide ore- bearing intrusions, in the Tarim LIP, a giant Fe-Ti-V oxide deposit is hosted by the Piqiang layered intrusion at the northern margin of the Tarim block. This intrusion consists mainly of gabbro and minor plagioclase-bearing clinopyroxenite and anorthosite (Fig. l a). For this study we present new SHRIMP zircon U-Pb age and whole-rock geochemical data for the Piqiang layered gabbroic intrusion to evaluate the nature of its possible source compositions, which in turn aids in understanding the formation of the giant Fe-Ti-V oxide deposit in the plume- related LIPs.
基金granted by the National Natural Science Foundation of China (Grant No.41572205)
文摘Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the deep processes of the India-Eurasia collision and the uplift and evolution of the Tibetan Plateau. Although high-potassic volcanic rocks are also exposed in the western Lhasa terrane, their formation time is still uncertain for the lack of reliable dating. We carried out zircon U-Pb geochronological study on the Langjiu Formation volcanic rocks, which are part of the Early Cretaceous Zenong group volcanic rocks based on 1:250000 scale Shiquanhe regional geological survey report, in the Shiquanhe area of the western Lhasa terrane. These new age data not only offer chronological basis for the regional stratigraphic correlation and classification, but also provide an essential opportunity for revealing signatures of magmatic pulses hidden in the deep crust of the Lhasa terrane.
文摘This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.
基金the National Natural Science Foundation of China (40412012035, 40472096) for financial support.
文摘Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.
基金supported by the National Natural Science Foundation of China(no.:40703012)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the Peoples Republic of China(no.:J0809),and Miyun Tourism Administration for the Yunmengshan National Geopark.
文摘The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.