This study focuses on exoscopic analyses of detrital zircon grains of Archean and Paleoproterozoic age, contained in the sediments from the Niamey Neoproterozoic sandstones (Niamey region), with a view to confirming t...This study focuses on exoscopic analyses of detrital zircon grains of Archean and Paleoproterozoic age, contained in the sediments from the Niamey Neoproterozoic sandstones (Niamey region), with a view to confirming the sediments sources already proposed (Kénéma-Man domain for Archean-age zircons and Baoulé Mossi domain for Paleoproterozoic-age zircons). Exoscopic analysis reveals that Archean zircon grains are more corroded, with rounded to sub-rounded shapes, while Paleoproterozoic zircon grains are less corroded and mostly angular in shape. The strong corrosion of Archean zircon grains, implying long-distance transport, is consistent with the remoteness of the Kenema-Man domain which are the source these sediments. The fact that the Paleoproterozoic zircon grains show little or no wear implies a proximal source of sediments, corresponding to the Baoulé Mossi domain.展开更多
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th...The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.展开更多
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition ...The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).展开更多
As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding ...As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.展开更多
The urgent need to mitigate climate change impacts and achieve net zero emissions has led to extensive research on carbon dioxide(CO_(2))-capture technologies.This study focuses on the kinetics of CO_(2)capture using ...The urgent need to mitigate climate change impacts and achieve net zero emissions has led to extensive research on carbon dioxide(CO_(2))-capture technologies.This study focuses on the kinetics of CO_(2)capture using solid adsorbents specifically through thermal gravimetric analysis(TGA).The research explores the principles behind TGA and its application in analyzing adsorbent performance and the significance of kinetics in optimizing CO_(2)-capture processes.Solid adsorbents have gained significant attention due to their potential for efficient and cost-effective CO_(2)capture.Therefore,three different types of adsorbents,namely calcium-,tin-,and zirconium-based ones(quicklime:CaO,potassium stannate:K_(2)SnO_(3),and sodium zirconate:Na_(2)ZrO_(3)),in adsorbing high-temperature carbon dioxide were investigated;their quality and performance by various factors such as price,stability,non-toxicity,and efficiency are different.The diffusion models and geometrical contraction models were the best-fitted models to explain the kinetic of these solid adsorbents for high-temperature CO_(2)sorption;it means the morphology is important for solid adsorbent performance.The minimum energy needed to start a reaction for K_(2)SnO_(3),Na_(2)ZrO_(3),and CaO,is 73.55,84.33,and 86.23 kJ·mol^(-1),respectively;with the lowest value being for potassium stannate.The high-temperature CO_(2)adsorption performance of various solid adsorbents in regard with the rate of reaction followed the order of K_(2)SnO_(3)>CaO>>Na_(2)ZrO_(3),based on experiments and kinetic studies.展开更多
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of ...Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.展开更多
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ...The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.展开更多
This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were use...This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability.展开更多
The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
β-Sialon/ZrN/ZrON composites were successfully fabricated by an in-situ carbothermal reduction?nitridation process with fly ash, zircon and active carbon as raw materials. The effects of raw materials composition an...β-Sialon/ZrN/ZrON composites were successfully fabricated by an in-situ carbothermal reduction?nitridation process with fly ash, zircon and active carbon as raw materials. The effects of raw materials composition and holding time on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by means of XRD and SEM. It was found that increasing carbon content in a sample and holding time could promote the formation of β-Sialon, ZrN and ZrON. The proper processing parameters to synthesize β-Sialon/ZrN/ZrON composites were mass ratio of zircon to fly ash to active carbon of 49:100:100, synthesis temperature of 1550 °C and holding time of 15 h. The average grain size ofβ-Sialon and ZrN(ZrON) synthesized at 1550 °C for 15 h reached about 2 and 1μm, respectively. The fabrication process ofβ-Sialon/ZrN/ZrON composites included the formation ofβ-Sialon and ZrO2 as well as the conversion of ZrO2 to ZrN and ZrON.展开更多
This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age o...This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.展开更多
Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablati...Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent.展开更多
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses,...The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses, intruded by mafic dykes of gabbroic composition. Many highly strained rocks were previously misinterpreted as supracrustal sequences and represent mylonitized granitoids and sheared dykes. Our single zircon dating documents magmatic granitoid emplacement ages between 2.52 Ga and 2.48 Ga, with rare occurrences of 2.7 Ga gneisses, possibly reflecting an older basement. A few granitic gneisses have emplacement ages between 2.35 and 2.1 Ga and show the same structural features as the older rocks, indicating that the main deformation occurred after -2.1 Ga. Intrusion of gabbroic dykes occurred at -1920 Ma, and all Hengshan rocks underwent granulite-facies metamorphism at 1.88-1.85 Ga, followed by retrogression, sheafing and uplift. We interpret the Hengshan and adjacent Fuping granitoid gneisses as the lower, plutonic, part of a late Archaean to early Palaeoproterozoic Japan-type magmatic arc, with the upper, volcanic part represented by the nearby Wutai complex. Components of this arc may have evolved at a continental margin as indicated by the 2.7 Ga zircons. Major deformation and HP metamorphism occurred in the late Palaeoproterozoic during the Luliang orogeny when the Eastern and Western blocks of the North China Craton collided to form the Trans-North China orogen. Shear zones in the Hengshan are interpreted as major lower crustal discontinuities post-dating the peak of HP metamorphism, and we suggest that they formed during orogenic collapse and uplift of the Hengshan complex in the late Palaeoproterozoic (〈1.85 Ga).展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a r...The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a resulting MDA has not been evaluated.We use large populations of synthetic zircon dates(N≈25,000)to analyze the impact of varying sample size(n),measurement uncertainty,and the abundance of neardepositional-age zircons on the accuracy and uncertainty of 9 commonly used MDA calculation methods.Furthermore,a new method,the youngest statistical population is tested.For each method,500 samples of n synthetic dates were drawn from the parent population and MDAs were calculated.The mean and standard deviation of each method ove r the 500 trials at each n-value(50-1000,in increments of 50)were compa red to the known depositional age of the synthetic population and used to compare the methods quantitatively in two simulation scenarios.The first simulation scenario varied the proportion of near-depositional-age grains in the synthetic population.The second scenario varied the uncertainty of the dates used to calculate the MDAs.Increasing sample size initially decreased the mean residual error and standard deviation calculated by each method.At higher n-values(>~300 grains),calculated MDAs changed more slowly and the mean resid ual error increased or decreased depending on the method used.Increasing the p roportion of near-depositional-age grains and lowering measurement uncertainty decreased the number of measurements required for the calculated MDAs to stabilize and decreased the standard deviation in calculated MDAs of the 500 samples.Results of the two simulation scenarios show that the most successful way to increase the accuracy of a calculated M DA is by acquiring a large number of low-uncertainty measurements(300300)approach is used if the calculation of accurate MDAs are key to research goals.Other acquisition method s,such as high-to moderate-precision measurement methods(e.g.,1%-5%,2σ)acquiring low-to moderate-n datasets(50300).Additionally,they are most susceptible to producing erroneous MDAs due to contamination in the field or laboratory,or through disturbances of the youngest zircon’s U-Pb systematics(e.g.,lead loss).More conservative methods that still produce accurate MDAs and are less susceptible to contamination or lead loss include:youngest grain cluster at 1σunce rtainty(YGC 1σ),youngest grain clusterat 2σuncertainty(YGC 2σ),and youngest statistical population(YSP).The ages calculated by these methods may be more useful and appealing when fitting calculated MDAs in to pre-existing chronostratigraphic frameworks,as they are less likely to be younger than the true depositional age.From the results of our numerical models we illustrate what geologic processes(i.e.,tectonic or sedimentary)can be resolved using MDAs derived from strata of different ages.展开更多
SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inher...SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.展开更多
High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350...High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350 ppm U, 140 ppm Th, and Th/U=0.52; the recommended zircon-melt partition coefficients are 81 for Du and 8.2 for DTh. In zircon from mafic and intermediate rocks, the median values are 270 ppm U, 170 ppm Th, and Th/U=0.81, and the recommended zirconmelt partition coefficients are 169 for Du and 59 for DTh. The U and Th contents and Th/U ratios of magmatic zircon are low when zircon crystallizes in equilibrium with the melt. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. However, when zircon crystallizes in disequilibrium with the melt, U and Th are more easily able to enter the zircon lattice, and their contents and Th/U ratios depend mainly on the degree of disequilibrium. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon.展开更多
文摘This study focuses on exoscopic analyses of detrital zircon grains of Archean and Paleoproterozoic age, contained in the sediments from the Niamey Neoproterozoic sandstones (Niamey region), with a view to confirming the sediments sources already proposed (Kénéma-Man domain for Archean-age zircons and Baoulé Mossi domain for Paleoproterozoic-age zircons). Exoscopic analysis reveals that Archean zircon grains are more corroded, with rounded to sub-rounded shapes, while Paleoproterozoic zircon grains are less corroded and mostly angular in shape. The strong corrosion of Archean zircon grains, implying long-distance transport, is consistent with the remoteness of the Kenema-Man domain which are the source these sediments. The fact that the Paleoproterozoic zircon grains show little or no wear implies a proximal source of sediments, corresponding to the Baoulé Mossi domain.
基金supported by the Iran National Science Foundation(INSF)(Grant No.98012578)projects from the National Natural Science Foundation of China(Grant Nos.41473033,41673031)。
文摘The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金This study was fi nancially supported by the Youth Science and Technology Talent Recruitment Project of Gansu Province(2022-19)Technological Innovation Project of Gansu Provincial Department of Natural Resources(2022-3,2022-4,2022-28)+2 种基金National Natural Science Foundation of China(Nos.42073059 and 42303034)Outstanding Youth Fund of Anhui Provincial Department of Education(No.2022AH020084)Doctoral Startup Foundation of Suzhou University(2021BSK038)。
文摘The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).
基金The National Natural Science Foundation of China under contract Nos 42030502, 42090041 and 42166003the Guangxi Scientific Projects under contract Nos AD17129063 and AA17204074+1 种基金the Guangxi Youth Science Fund Project under contract 2019GXNSFBA185016the Ph.D. Research Start-up Foundation of Guangxi University under contract No. XBZ170339。
文摘As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.
文摘The urgent need to mitigate climate change impacts and achieve net zero emissions has led to extensive research on carbon dioxide(CO_(2))-capture technologies.This study focuses on the kinetics of CO_(2)capture using solid adsorbents specifically through thermal gravimetric analysis(TGA).The research explores the principles behind TGA and its application in analyzing adsorbent performance and the significance of kinetics in optimizing CO_(2)-capture processes.Solid adsorbents have gained significant attention due to their potential for efficient and cost-effective CO_(2)capture.Therefore,three different types of adsorbents,namely calcium-,tin-,and zirconium-based ones(quicklime:CaO,potassium stannate:K_(2)SnO_(3),and sodium zirconate:Na_(2)ZrO_(3)),in adsorbing high-temperature carbon dioxide were investigated;their quality and performance by various factors such as price,stability,non-toxicity,and efficiency are different.The diffusion models and geometrical contraction models were the best-fitted models to explain the kinetic of these solid adsorbents for high-temperature CO_(2)sorption;it means the morphology is important for solid adsorbent performance.The minimum energy needed to start a reaction for K_(2)SnO_(3),Na_(2)ZrO_(3),and CaO,is 73.55,84.33,and 86.23 kJ·mol^(-1),respectively;with the lowest value being for potassium stannate.The high-temperature CO_(2)adsorption performance of various solid adsorbents in regard with the rate of reaction followed the order of K_(2)SnO_(3)>CaO>>Na_(2)ZrO_(3),based on experiments and kinetic studies.
基金financially supported by the National Key Research and Development Plan(Grant No.2023YFC2906801)。
文摘Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
基金the financial support from the National Natural Science Foundation of China(Nos.51572061,51621091,and 51321061)the Heilongjiang Touyan Team Program。
文摘The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.
基金This work was sponsored by the National Natural Science Foundation of China(No.52172029)the Natural Science Foundation of Henan(No.202300410473).
文摘This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability.
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
基金Project(2013AA030902)supported by the National High-tech Research and Development Program of ChinaProjects(51074038,51274057)supported by the National Natural Science Foundation of China+2 种基金Projects(N120402006,N100302002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(L2012079)supported by the Educational Commission of Liaoning Province of ChinaProject(110215)supported by the Training Program on National College Students Innovation Experiment
文摘β-Sialon/ZrN/ZrON composites were successfully fabricated by an in-situ carbothermal reduction?nitridation process with fly ash, zircon and active carbon as raw materials. The effects of raw materials composition and holding time on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by means of XRD and SEM. It was found that increasing carbon content in a sample and holding time could promote the formation of β-Sialon, ZrN and ZrON. The proper processing parameters to synthesize β-Sialon/ZrN/ZrON composites were mass ratio of zircon to fly ash to active carbon of 49:100:100, synthesis temperature of 1550 °C and holding time of 15 h. The average grain size ofβ-Sialon and ZrN(ZrON) synthesized at 1550 °C for 15 h reached about 2 and 1μm, respectively. The fabrication process ofβ-Sialon/ZrN/ZrON composites included the formation ofβ-Sialon and ZrO2 as well as the conversion of ZrO2 to ZrN and ZrON.
文摘This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.
文摘Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent.
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
基金funded by the German Science Foundation(DFG,grant Kr 590/62)the National Natural Science Foundation of China(grant Nos.49832030,49772143 and 49572140 to Li Jianghai)
文摘The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses, intruded by mafic dykes of gabbroic composition. Many highly strained rocks were previously misinterpreted as supracrustal sequences and represent mylonitized granitoids and sheared dykes. Our single zircon dating documents magmatic granitoid emplacement ages between 2.52 Ga and 2.48 Ga, with rare occurrences of 2.7 Ga gneisses, possibly reflecting an older basement. A few granitic gneisses have emplacement ages between 2.35 and 2.1 Ga and show the same structural features as the older rocks, indicating that the main deformation occurred after -2.1 Ga. Intrusion of gabbroic dykes occurred at -1920 Ma, and all Hengshan rocks underwent granulite-facies metamorphism at 1.88-1.85 Ga, followed by retrogression, sheafing and uplift. We interpret the Hengshan and adjacent Fuping granitoid gneisses as the lower, plutonic, part of a late Archaean to early Palaeoproterozoic Japan-type magmatic arc, with the upper, volcanic part represented by the nearby Wutai complex. Components of this arc may have evolved at a continental margin as indicated by the 2.7 Ga zircons. Major deformation and HP metamorphism occurred in the late Palaeoproterozoic during the Luliang orogeny when the Eastern and Western blocks of the North China Craton collided to form the Trans-North China orogen. Shear zones in the Hengshan are interpreted as major lower crustal discontinuities post-dating the peak of HP metamorphism, and we suggest that they formed during orogenic collapse and uplift of the Hengshan complex in the late Palaeoproterozoic (〈1.85 Ga).
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.
基金Funding for this research was provided by a NSERC Discovery Grant(No.RGPIN/341715-2013)to S.Hubbard and a Queen Eliz-abethⅡscholarship from the University of Calgary to D.Coutts
文摘The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a resulting MDA has not been evaluated.We use large populations of synthetic zircon dates(N≈25,000)to analyze the impact of varying sample size(n),measurement uncertainty,and the abundance of neardepositional-age zircons on the accuracy and uncertainty of 9 commonly used MDA calculation methods.Furthermore,a new method,the youngest statistical population is tested.For each method,500 samples of n synthetic dates were drawn from the parent population and MDAs were calculated.The mean and standard deviation of each method ove r the 500 trials at each n-value(50-1000,in increments of 50)were compa red to the known depositional age of the synthetic population and used to compare the methods quantitatively in two simulation scenarios.The first simulation scenario varied the proportion of near-depositional-age grains in the synthetic population.The second scenario varied the uncertainty of the dates used to calculate the MDAs.Increasing sample size initially decreased the mean residual error and standard deviation calculated by each method.At higher n-values(>~300 grains),calculated MDAs changed more slowly and the mean resid ual error increased or decreased depending on the method used.Increasing the p roportion of near-depositional-age grains and lowering measurement uncertainty decreased the number of measurements required for the calculated MDAs to stabilize and decreased the standard deviation in calculated MDAs of the 500 samples.Results of the two simulation scenarios show that the most successful way to increase the accuracy of a calculated M DA is by acquiring a large number of low-uncertainty measurements(300300)approach is used if the calculation of accurate MDAs are key to research goals.Other acquisition method s,such as high-to moderate-precision measurement methods(e.g.,1%-5%,2σ)acquiring low-to moderate-n datasets(50300).Additionally,they are most susceptible to producing erroneous MDAs due to contamination in the field or laboratory,or through disturbances of the youngest zircon’s U-Pb systematics(e.g.,lead loss).More conservative methods that still produce accurate MDAs and are less susceptible to contamination or lead loss include:youngest grain cluster at 1σunce rtainty(YGC 1σ),youngest grain clusterat 2σuncertainty(YGC 2σ),and youngest statistical population(YSP).The ages calculated by these methods may be more useful and appealing when fitting calculated MDAs in to pre-existing chronostratigraphic frameworks,as they are less likely to be younger than the true depositional age.From the results of our numerical models we illustrate what geologic processes(i.e.,tectonic or sedimentary)can be resolved using MDAs derived from strata of different ages.
基金research grants No.40172030 from the NSFC and No.TG1999075502 from the Ministryof Science and Technology of China.
文摘SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.
基金supported by the National Natural Science Foundation of China(Grant No. 40972058)the research grants(2008-Ⅰ-02 and 2008-Ⅱ-08)from the State Key Laboratory for Mineral Deposit Research,Nanjing University
文摘High-precision data on U and Th contents and Th/U ratios of zircon obtained using secondary ion mass spectrometry analysis have been collected from the literature. Zircon in the granitic rocks has median values of 350 ppm U, 140 ppm Th, and Th/U=0.52; the recommended zircon-melt partition coefficients are 81 for Du and 8.2 for DTh. In zircon from mafic and intermediate rocks, the median values are 270 ppm U, 170 ppm Th, and Th/U=0.81, and the recommended zirconmelt partition coefficients are 169 for Du and 59 for DTh. The U and Th contents and Th/U ratios of magmatic zircon are low when zircon crystallizes in equilibrium with the melt. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. However, when zircon crystallizes in disequilibrium with the melt, U and Th are more easily able to enter the zircon lattice, and their contents and Th/U ratios depend mainly on the degree of disequilibrium. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon.